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a b s t r a c t 

Skeleton-based action recognition aims to recognize human actions by exploring the inherent character- 

istics from the given skeleton sequences and has attracted far more attention due to its great important 

potentials in practical applications. Previous methods have illustrated that learning discriminative spatial 

and temporal features from the skeleton sequences is a crucial factor to recognize human actions. Never- 

theless, how to model spatio-temporal evolutions is still a challenging problem. In this work, we propose 

a novel model with hierarchical spatial reasoning and temporal stack learning network (HSR-TSL) to ex- 

plore the discriminative spatial and temporal features for human action recognition, which consists of a 

hierarchical spatial reasoning network (HSRN) and a temporal stack learning network (TSLN). Specifically, 

the HSRN employs a hierarchical residual graph neural network to capture two-level spatial features: intra 

spatial information of each part and body-level structural information between each part. The TSLN mod- 

els the detailed temporal dynamics of skeleton sequences by a composition of multiple skip-clip LSTMs. 

During training, we develop a clip-based incremental loss to effectively optimize the model. We perform 

extensive experiments on five challenging benchmarks to verify the effectiveness of each component of 

our model. The comparison results illustrate that our approach significantly boosts the performances for 

skeleton-based action recognition. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Human action recognition is a fundamental and challenging

ime series classification task in computer vision research. This

ask involves exploring the motion characteristics of human ac-

ion from given videos to predict human action classes. In addi-

ion, human action recognition has gained more and more atten-

ion due to its important role in many applications, such as intel-

igent video surveillance, video retrieval, human-computer interac-

ion and game control [1,2] . For action recognition, how to analyze

uman motion information and understand its temporal character-

stics is a challenging problem. 

Recently, many advanced algorithms [3–5] have been proposed

o learn and extract effective spatio-temporal features from RGB
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ideos, where spatial appearance and temporal optical flow from

GB videos generally are applied to model the motion dynam-

cs, such as two-stream convolutional networks in [3] . However,

he spatial appearance only contains 2D information that is hard

o capture all the motion information, and the optical flow gen-

rally needs high computing costs. Compared to RGB videos, 3D

keleton data can represent the body structure with a set of 3D

oordinate positions, and it is not affected by background clut-

er, illumination changes and appearance variation. Therefore, the

ore effective and discriminative representation about human ac-

ion can be easily learned from 3D skeleton data. Moreover, Jo-

ansson et al. [6] have explained that 3D skeleton sequences can

ffectively represent the dynamics of human actions. Besides, the

keleton sequences can be obtained by the Microsoft Kinect [7] and

he advanced human pose estimation algorithms [8] . Considering

he advantages of 3D skeleton data, we focus on skeleton-based

ction recognition in this work. 

Over the years, skeleton-based human action recognition has

ttracted more and more attention [9–11] . As a time series classifi-

ation task, recurrent neural networks (RNNs) performing a strong

ower in learning the temporal dependencies are naturally ap-
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Fig. 1. The overall pipeline of our model which contains a hierarchical spatial reasoning network and a temporal stack learning network. In the hierarchical spatial reasoning 

network, a hierarchical residual graph neural network (HRGNN) is used to capture the body-level structural information between each part and the intra spatial relationships 

of joints in each part. The temporal stack learning network can model the detailed temporal dynamics for the skeleton sequence. During training, the proposed model is 

efficiently optimized with the clip-based incremental losses (CIloss). 
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t  
plied to model the temporal dynamics of skeleton sequences in

many previous works. For example, a hierarchical RNN [10] is pro-

posed to learn motion representations from skeleton sequences.

Shahroudy et al. [12] introduce a part-aware LSTM network to fur-

ther improve the performance of the LSTM framework. To model

the discriminative features, a spatial-temporal attention model

[11] based on LSTM is proposed to focus on discriminative joints

and pay different attentions to different frames. 

These methods have achieved a great improvement in perfor-

mance of action recognition, but how to explore spatial structure

features and temporal characteristics is still a challenging problem.

As we known, human behavior is accomplished in coordination

with each part of the body. For example, walking requires legs to

walk, and it also needs the swing of arms to coordinate the body

balance. In addition, each body part contains several joints. There-

fore, there are two-level important cues to recognize human ac-

tions: the body-level structural information between each part and

the intra spatial relationships of joints in each part. Besides spa-

tial information, the temporal dynamics characteristics of human

actions play another significant role in human action recognition.

Most methods generally utilize RNNs to directly model the overall

temporal dynamics of skeleton sequences. And the hidden repre-

sentation of the final RNN is used to recognize the actions. How-

ever, the last hidden representation cannot completely contain the

detailed temporal dynamics for long-term sequences. 

In this work, to solve the above challenges, we propose a

novel model with hierarchical spatial reasoning and temporal stack

learning (HSR-TSL) for skeleton-based action recognition. The pro-

posed HSR-TSL is an end-to-end deep network architecture, which

contains a hierarchical spatial reasoning network (HSRN) and a

temporal stack learning network (TSLN). The overall pipeline of

HSR-TSL is shown in Fig. 1 . For spatial structures of the skele-

ton, a hierarchical spatial reasoning network is proposed to cap-

ture the high-level spatial structural features within each frame.

As discussed above, human body structure contains two-level spa-

tial information, i.e., the body-level structural information between

each part and the intra spatial relationships of joints in each part.

We apply a hierarchical residual graph neural network (HRGNN)

to model the two-level spatial structural features. Specifically, the

human body is firstly decomposed into different parts, e.g., two

arms, two legs and one trunk. An intra-parts residual graph net-

work (intra-RGNN) explores the spatial structural relationship be-

tween joints of each part. Another graph network termed as inter-
 d  
arts residual graph network (inter-RGNN) captures the body-level

tructural information between each part. Moreover, the joint fea-

ures in intra-RGNN will be aggregated into the corresponding part

odes of inter-RGNN. Therefore, the representation of each node

n inter-RGNN contains not only the body-level structural infor-

ation between each part but also the intra spatial relationships

f joints in each part. For temporal dynamics of sequences, we

ropose a temporal stack learning network to model the detailed

emporal dynamics of the sequences, which consists of three skip-

lip LSTMs. Given a long-term sequence, it is divided into multiple

lips. The short-term temporal information of each clip is mod-

led with an LSTM layer that shared among the clips in a skip-

lip LSTM layer. When feeding a clip into shared LSTM, the hidden

tate of shared LSTM is initialized with the sum of the final hidden

tate of all previous clips, which can inherit previous dynamics to

aintain the dependency between clips. Note that each part se-

uence is processed by TSLN. As shown in Fig. 1 , the aggregation

f all part features is used to predict human action classes. Be-

ides, we propose a clip-based incremental loss to further improve

he ability of stack learning, which can also effectively solve the

roblem of long-term sequence optimization. Experimental results

how that the proposed HSR-TSL speeds up the model convergence

nd improves the performance. 

The main contributions of this paper are summarized as fol-

ows: 

1. We propose a hierarchical spatial reasoning network for each

skeleton frame, which can effectively capture the body-level

structural information between each part and the intra spatial

relationships of joints in each part with a hierarchical residual

graph neural network. 

2. We propose a temporal stack learning network to model the

detailed temporal dynamics of skeleton sequences by a compo-

sition of multiple skip-clip LSTMs. 

3. We perform extensive experiments on five challenging bench-

marks to verify the effectiveness of each component of our

model. The comparison results illustrate that our approach sig-

nificantly boosts the performances for skeleton-based action

recognition. 

It should be noted that this paper is an extension of the pre-

iminary conference paper [13] . The present work mainly adds to

he preliminary version in several significant ways. First, we intro-

uce a novel graph structure termed as hierarchical residual graph
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Fig. 2. (a) shows the structure of an LSTM neuron. (b) shows a graph neural net- 

work with 3 nodes. 
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eural network that is capable of exploiting not only the body-

evel structural information between each part but also the in-

ra spatial relationships of joints in each part. Experimentally, we

emonstrate that it can obviously improve the performances in

omparison to the previously proposed residual graph neural net-

ork that focuses on the body-level structural information be-

ween each part. Second, instead of aggregating all part features

efore TSLN, we apply TSLN to process each part sequence to learn

heir unique temporal features then aggregate all part features to

redict human action classes. Third, we perform more rich exper-

ments on five challenging benchmarks to further analyse the ef-

ectiveness of our model. The comparison results illustrate that our

pproach significantly boosts the performances for skeleton-based

ction recognition. 

. Related work 

.1. Skeleton-Based action recognition 

Recently, amounts of works have been proposed for skeleton-

ased action recognition [14–23] . For the traditional approaches

16,18,24–26] , they represent human motion by designing various

and-crafted features from skeleton sequences, such as relative 3D

eometry between all pairs of body parts [27] . 

Recently, deep learning has also been applied to this task due

o its wide success. Due to the strong ability of Convolutional Neu-

al Networks (CNNs) for learning hierarchical representation, some

ethods [17,19,20,28–31,31–36] exploit CNNs to recognize human

ctions. For example, Du et al. [17] and Li et al. [29] represent

he skeleton sequence as an image, where the value of 3D coor-

inates is corresponding to three channels of an image, the joints

f each frame are represented as columns and the frame sequences

re arranged in rows. Considering the powerful capability of cap-

uring the dynamics of sequences for the Recurrent Neural Net-

orks (RNNs), most of methods utilize RNNs for this task [10–

2,37–43] . Du et al. [10] first propose an end-to-end hierarchical

NN for skeleton-based action recognition. Zhang et al. [38] ex-

loit a view adaptive model with LSTM architecture, which en-

bles the network to adapt to the most suitable observation view-

oints from end to end. The skeleton data can naturally be rep-

esented as the graph-structured data. Therefore, graph-based ap-

roaches [13,44–48] are popularly adopted for skeleton-based ac-

ion recognition, such as ST-GCN [45] , AGC-LSTM [46] . The most

imilar works to ours are [40] and [46] . Lee et al. [40] proposes an

nsemble temporal sliding L STM (TS-L STM) network for skeleton-

ased action recognition. They utilize an ensemble of multi-term

emporal sliding LSTM networks to capture short-term, medium-

erm, long-term temporal dependencies and even spatial skele-

on pose dependency. Unlike the ensemble of multi-term temporal

liding LSTM networks, we propose a simple temporal stack learn-

ng network to effectively learn the detailed temporal dynamics

f skeleton sequences. Si et al. [46] introduces a graph convolu-

ional LSTM to capture discriminative spatiotemporal features. In

46] , each node of graph denotes the body part, which only con-

iders the body-level structural information between each part but

eglects the intra spatial relationships of joints in each part. In this

aper, we design a hierarchical spatial reasoning network, that can

everage not only the body-level structural information but also the

ntra spatial relationships of joints in each part with a hierarchical

esidual graph neural network. 

.2. Graph-based models 

Due to the effective representation for the graph structure data,

raph-based models have received a lot of attention and are ap-

lied to represent various datasets, such as web link data, social
etwork, human skeleton, etc. According to the way of updating

he state of the node, existing graph models can be categorized

nto two architectures. The first framework is to apply Convolu-

ional Neural Networks to graph, namely graph convolutional net-

ork (GCN), which improves the traditional convolution network

n graph. Henaff et al. [49] , Duvenaud et al. [50] utilize the CNNs

n the spectral domain relying on the graph Laplacian. LeCun [51] ,

iepert et al. [52] apply the convolution directly on the graph

odes and their neighbors, which construct the graph filters on

he spatial domain. The other framework is the combination of

raph and recurrent neural network, namely graph neural network

GNN), which utilizes the recurrent neural networks to every node

f the graph. Scarselli et al. [53] proposes to recurrently update the

idden state of each node of the graph. In this paper, a hierarchical

esidual graph neural network is utilized to model the body-level

tructural information between each part and the intra spatial re-

ationships of joints in each part. 

. Overview 

In this section, we briefly review the Recurrent Neural Network

RNN), Long Short-Term Memory (LSTM) and the Graph Neural

etwork (GNN)., which is utilized in our framework. 

.1. RNN and LSTM 

In this section, we briefly review the Recurrent Neural Net-

ork(RNN) and the Long Short-Term Memory (LSTM). RNN is a

owerful model to capture the dynamics of sequences via cycles

n the network of nodes. However, the standard RNN is difficultly

ptimized for the long-term sequence tasks due to the vanishing

nd exploding gradient problems. Hochreiter et al. [54] propose

n advanced RNN architecture of Long Short-Term Memory (LSTM)

o overcome the vanishing and exploding gradient problems. As

hown in Fig. 2 a, an LSTM neuron contains an input gate i t , a for-

et gate f t , an output gate o t and a cell c t , which can promote the

bility to learn long-term dependencies. 

.2. Graph neural network 

Graph Neural Network (GNN) is a powerful model to deal with

 more general class of graphs, which is introduced in [53] as a

eneralization of recursive neural networks. Particularly, a GNN can

e defined as an ordered pair G = { V , E}, where V is the set of

odes and E is the set of edges. For the GNN shown in Fig. 2 b,

he input vector of each node v ∈ V is based on the information

ontained in the neighborhood of node v , and the hidden state of

ach node is updated recurrently. Specifically, at time step t , the

eceived messages of a node are calculated with the hidden states

f its neighbors. Then, the received messages and previous states
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Fig. 3. (a) shows the corresponding relationships (RGNN) between human part and graph node in the preliminary conference paper [13] . (b) illustrates the architecture 

of proposed HRGNN and the corresponding relationships with human skeleton. (c) is the architecture of intra-RGNN that is the same as RGNN. (d) is the architecture of 

inter-RGNN that has an additional input ̂ m 

t 

k to update the node hidden state, where ̂ m 

t 

k is the aggregated information from intra-RGNN. 
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are utilized to update its hidden state. Finally, the outputs can be

computed with the hidden states of the nodes. The GNN formula-

tion at time step t is defined as follows: 

m 

t 
i = f m 

(
{ s t−1 

ˆ i 
| ̂ i ∈ { 1 , . . . , | �v i | } 

)
(1)

s t i = f s 
(
m 

t 
i , s 

t−1 
i 

)
(2)

o 

t 
i = f o 

(
s t i 
)

(3)

where s t 
i 

is the hidden state of the i th ( i ∈ { 1 , . . . , | V | } ) node. The

set of nodes �v i stands for the neighbors of node v i . m 

t 
i 

is the sum

of all the messages that the neighbors �v i send to node v i . f m 

is

the function to compute the incoming messages. f s is the function

that expresses the state of a node and f o is the function to produce

the output o t 
i 
. Similar to RNNs, these functions are the learned

neural networks and are shared among different time steps. 

4. Model architecture 

In this paper, we propose an effective model for skeleton-based

action recognition, which contains a hierarchical spatial reason-

ing network and a temporal stack learning network. The overall

pipeline of our model is shown in Fig. 1 . In this section, we will

introduce these networks in detail. 

4.1. Hierarchical spatial reasoning network 

Rich inherent structures of the human body that are involved in

action recognition task, motivate us to design an effective architec-

ture to model the high-level spatial structural information within

each frame. As we known, human behavior is accomplished in co-

ordination with each part of the body. And the body can be de-

composed into multi parts, e.g. two arms, two legs and one trunk,

which express the knowledge of human body configuration. In the

preliminary conference paper [13] , the spatial structure informa-

tion is exploited with a proposed residual graph neural network

(RGNN), where each node of the RGNN denotes the body part and

the input of each node is the concatenation of all joint coordinates

in each part (shown in Fig. 3 a). Si et al. [13] only considers the

body-level structural information between each part but neglects

the intra spatial relationships of joints in each part. 

In order to overcome the above problem, we propose a novel

network termed as hierarchical spatial reasoning network (HSRN),

which can leverage not only the body-level structural information

but also the intra spatial relationships of joints in each part with

a hierarchical residual graph neural network (HRGNN). Specifically,

the HSRN encodes the coordinate vectors via two steps (shown in

Fig. 1 ) to capture the high-level spatial features of skeleton struc-

tural information. First, the preliminary encoding process maps the
oordinate vector of each joint into the feature space with a linear

ayer that is shared among different joints. Second, all joint fea-

ures are fed into the proposed hierarchical residual graph neural

etwork (HRGNN) to model the structural relationships of intra-

arts and inter-parts. As illustrated in Fig. 3 b, the HRGNN contains

n intra-parts residual graph neural network (intra-RGNN) and an

nter-parts residual graph neural network (inter-RGNN). The intra-

GNN and the inter-RGNN are essentially two residual graph neu-

al networks, but there are two differences: 1) Each node of the

ntra-RGNN denotes a joint in a body part and the intra-RGNN ex-

lores the spatial structural relationship between joints of each

art. Moreover, the intra-RGNN is shared among different parts.

or the inter-RGNN, its nodes correspond to the human body parts

nd it captures the body-level structural information between each

art. 2) Fig. 3 c shows the architecture of intra-RGNN that is the

ame as RGNN. In order to enrich the inter-structure representa-

ion of part node, we aggregate the joint features in intra-RGNN

nto the corresponding part nodes of inter-RGNN. Hence the inter-

GNN shown in Fig. 3 d has an additional input ̂ m 

t 
k to update the

ode hidden state, where ̂ m 

t 
k is the aggregated information from

ntra-RGNN. 

Formally, there is a RGNN with K nodes that correspond to the

oints in intra-RGNN or the parts in inter-RGNN. We use r t 
k 

∈ R 

t 

o denote the relation feature vector of each node at time step t ,

here k ∈ { 1 , . . . , K} and R 

t = { r t 
1 
, . . . , r t 

K 
} . And r t 

k 
represents the

patial structural relationship of the joint (part) k with other joints

parts). For the intra-RGNN, the r t 
k 

is initialized with the individual

oint feature in each part. For the inter-RGNN, we aggregate the

oint features of corresponding part to initialize the r t 
k 
. We use m 

t 
ik 

o denote the received message of node k from node i at time step

 , where i ∈ { 1 , . . . , K} . Furthermore, the received messages m 

t 
k 

of

ode k from all the neighbors �v k at time step t are defined as

ollows: 

 

t 
k = 

∑ 

i ∈ �v k 

m 

t 
ik = 

∑ 

i ∈ �v k 

W m 

s t−1 
i 

+ b m 

(4)

here s t−1 
i 

is the state of node i at time step t − 1 , and a shared

inear layer of weights W m 

and biases b m 

will be used to com-

ute the messages for all nodes. After aggregating the messages,

he messages are used to update the node hidden state: 

 

t 
k = f lstm 

(
r t−1 

k 
, m 

t 
k , s 

t−1 
k 

)
(5)

here f lstm 

( · ) denotes the LSTM cell function. Note that the inter-

GNN has an additional input ̂ m 

t 
k to update the node hidden state.

herefore, the updating function of the node hidden state in the

nter-RGNN can be defined as follows: 

 

t 
k = f lstm 

(
r t−1 

k 
, m 

t 
k , s 

t−1 
k 

, ̂ m 

t 

k 

)
(6)

here the ̂ m 

t 
k is obtained with a linear layer mapping the concate-

ation of the joint structural features of corresponding part k . 
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Fig. 4. The architecture of three skip-clip LSTM layers. 
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Then, we calculate the relation representation r t 
k 

at time step t

ia: 

 

t 
k = r t−1 

k 
+ s t k (7) 

he residual design of Eq. (7) aims to add the relationship fea-

ures between each node based on the individual features, so that

he representations contain the fusion of both features. Because

he joint features in intra-RGNN will be aggregated into the cor-

esponding part nodes of inter-RGNN. The representation of each

ode in inter-RGNN contains not only the body-level structural in-

ormation between each part but also the intra spatial relation-

hips of joints in each part. After the HRGNN is updated T times,

e extract node-level output of inter-RGNN as the spatial struc-

ural relationships r T 
k 

of each part within each frame, which will

e fed into the TSLN to learn the temporal dynamics for each part.

.2. Temporal stack learning network 

Temporal information is another important cue for this task.

ich temporal dynamics drives us to design an effective network

o learn the discriminative features of various action. We propose

 temporal stack learning network further focuses on modeling de-

ailed temporal dynamics. Instead of aggregating all part features

efore TSLN in [13] , we apply a shared TSLN to process each part

eature sequence to learn their unique temporal features then ag-

regate all part features to predict human action classes (shown

n Fig. 1 ). The TSLN is a two stream architecture, containing a po-

ition network and a velocity network. These two networks have

he same architecture, which is composed of three skip-clip LSTM

ayers (shown in Fig. 4 ). 

In TSLN, to capture the detailed temporal information, the

ong-term sequence can be decomposed into multiple contin-

ous clips. Specifically, a skeleton sequence with N frames is

ivided into M clips at intervals of d frames. With the hi-

rarchical spatial reasoning network, we can gain the spatial

tructural features { R 1 , R 2 , . . . , R M 

} of body parts, where R m 

=
 r md+1 , r md+2 , . . . , r (m +1) d } is the set of part features of clip m , and

 n denotes the high-level spatial structural feature of a body part

n the skeleton frame n, n ∈ { 1 , . . . , N} . Then, the spatial structural

eatures { R 1 , R 2 , . . . , R M 

} are fed into the position network of TSLN.

n addition, the inputs of velocity network are the temporal differ-

nces { V 1 , V 2 , . . . , V M 

} of the spatial features between two consecu-

ive frames, where V m 

= { v md+1 , v md+2 , . . . , v (m +1) d } . v n = r n − r n −1 

enotes the temporal difference of spatial features of a body part

n the skeleton frame n . 

Skip-Clip LSTM Layer In the skip-clip LSTM layer, a shared

STM layer among the continuous clips is used to learn the tempo-

al information of each clip (see Fig. 4 ). For example, we feed the

patial features of continuous skeleton frames in the clip m into

he shared LSTM to capture the short-term temporal dynamics for

osition network: 

 

′ 
m 

= f LST M 

( R m 

) = f LST M 

({ r md+1 , r md+2 , . . . , r (m +1) d } 
)

(8) 
t  
here h 

′ 
m 

is the last hidden state of shared LSTM for the clip m,

 LSTM 

( ·) denotes the shared LSTM in the skip-clip LSTM layer. It

hould note that the inputs of LSTM cell between the first skip-clip

STM layer and the other layers are different. As shown in Fig. 4 ,

he input x l t of LSTM cell for the l ( l ≥ 2) layer at time step t is the

oncatenation of h 

l−1 
t−1 and h 

l−1 
t , i.e. , x l t = concat( h 

l−1 
t−1 , h 

l−1 
t ) , where

 

l−1 
t is the hidden state of the l − 1 LSTM layer at time step t . This

an make the network gain more dependency between two adja-

ent frames 

To aggregate all the detailed temporal dynamics of the m th clip

nd all previous clips to represent the long-term sequence, we cal-

ulate the representation of clip dynamics as follows: 

 m 

= H m −1 + h 

′ 
m 

= 

m ∑ 

i =1 

h 

′ 
i (9) 

here H m −1 and H m 

denote the representations of clip m − 1 and

 , respectively. When feeding the clip m into the shared LSTM

ayer, we initialize the initial hidden state h 

0 
m 

of the shared LSTM

ith the H m −1 , such that h 

0 
m 

= H m −1 , which can inherit previ-

us dynamics to learn the short-term dynamics of the m th clip to

aintain the dependency between clips. Therefore, it is effective

or LSTM layer to learn the temporal dynamics of the short-term

lip based on the temporal information of previous clips. And the

arger m is the richer temporal dynamics H m 

contains. 

Learning the Classier After processing each part sequence with

 shared TSLN, we can get the local representation H km 

, where H km 

s the feature of clip m of the part k . Then, the global representa-

ion 

̂ H m 

of clip m can be calculated with a linear layer: 

̂ 

 m 

= F g ( concat( H 1 m 

, . . . , H Km 

) ) (10) 

here F g is the linear layer. Finally, two linear layers F o are used

o compute the scores for C classes: 

 m 

= F o 

(
̂ H m 

)
(11) 

here O m 

is the score of clip m and O m 

= ( o m 1 , o m 2 , . . . , o mC ) . And

he output is fed to a softmax classifier to predict the probability

eing the i th class: 

ˆ 
 mi = 

e o mi 

∑ C 
j=1 e 

o m j 

, i = 1 , . . . , C (12) 

here ˆ y mi indicates the probability that the clip m is predicted as

he i th class. And ˆ y m 

= 

(
ˆ y m 1 , . . . , ̂  y mC 

)
denotes the probability vec-

or of clip m . 

With the TSLN, we can extract the dynamic representations ̂ H 

p 

m 

nd 

̂ H 

v 
m 

from the position and velocity for the clip m , respectively.

oreover, the fusion representation 

̂ H 

s 

m 

can be calculated with the

um of ̂ H 

p 

m 

and 

̂ H 

v 
m 

. Hence, according to the clip dynamic repre-

entations ( ̂ H 

p 

m 

, ̂ H 

v 
m 

and 

̂ H 

s 

m 

), the probability vectors ( ̂  y 
p 
m 

, ˆ y 
v 
m 

and

ˆ  
s 
m 

) can be predicted from the network. 

Following [13] , the clip based incremental losses are used to op-

imize the model for a skeleton sequence: 

 p = −
M ∑ 

m =1 

m 

M 

C ∑ 

i =1 

y i log ̂  y p 
mi 

(13) 

 v = −
M ∑ 

m =1 

m 

M 

C ∑ 

i =1 

y i log ̂  y v mi (14) 

 s = −
M ∑ 

m =1 

m 

M 

C ∑ 

i =1 

y i log ̂  y s mi (15) 

here y = ( y 1 , . . . , y C ) denotes the groundtruth label. The greater

he coefficient m 

M 

is, the richer temporal information the clip con-

ains. The network can benefit from clip-based incremental losses,
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which will promote the ability of modeling the detailed tempo-

ral dynamics for long-term skeleton sequences. Finally, the training

loss of our model is defined as follows: 

L = L s + α1 L p + α2 L v (16)

where α1 and α2 are the hyper-parameters that are set to 1 to

ensure equivalent importance of two loss terms during training. 

Due to the mechanisms of skip-clip LSTM (see the Eq. (9) ), the

representation 

̂ H 

s 

m 

of clip M aggregates all the detailed temporal

dynamics of the continuous clips from the position sequences and

velocity sequences. In the testing process, we only use the proba-

bility vector ˆ y 
s 
M 

to predict the class of the skeleton sequence. 

5. Experiments 

5.1. Datasets and experimental settings 

5.1.1. NTU RGB+D dataset (NTU) [12] 

This dataset has 56,880 video samples and is the current largest

action recognition dataset with joints annotations that are col-

lected by Microsoft Kinect v2. It contains 60 action classes in total.

These actions are performed by 40 distinct subjects. These video

samples are collected with three cameras simultaneously in differ-

ent horizontal views. The joints annotations consist of 3D locations

of 25 major body joints. We follow the two standard evaluation

protocols proposed in [12] to verify our model: Cross-Subject and

Cross-View. For Cross-Subject evaluation, the 40 subjects are split

into training and testing groups. Each group consists of 20 sub-

jects. For Cross-View evaluation, all the samples of cameras 2 and

3 are used for training while the samples of camera 1 are used for

testing. 

5.1.2. SYSU 3D Human-object interaction dataset (SYSU) [55] 

This dataset contains 480 video samples with 12 action classes.

These actions are performed by 40 subjects. There are 20 joints for

each subject in the 3D skeleton sequences. 

5.1.3. Northwestern-UCLA dataset (N-UCLA) [56] 

This dataset contains 1494 video clips covering 10 action cate-

gories. It is captured by three Kinect cameras simultaneously from

a variety of viewpoints. Each action sample contains RGBD and hu-

man skeleton data performed by 10 different subjects. Each subject

has 20 joints. The evaluation protocol is the same as in [56] . We

use samples from the first two cameras as training data, and the

samples from the other camera as the testing dataset. 

5.1.4. UTD Multimodal human action dataset (UTD-MHAD) [22] 

This dataset is collected using a Microsoft Kinect sensor and

a wearable inertial sensor in an indoor environment. The dataset

contains 27 actions performed by 8 subjects (4 females and 4

males). Each subject repeats each action 4 times. It includes 861

data sequences. For the skeleton sequences, each frame contains

20 skeleton joints. 

5.1.5. UWA3D multiview activity II dataset (UWA3D) [57] 

This dataset has 1075 video samples. It consists of 30 actions

performed by 10 subjects. Each action is observed from different

views: front view (v1), left side view (V2), right side view (V3) and

top view (V4). This dataset is challenging because of varying view-

points, self-occlusion and high similarity among activities. 

5.1.6. Experimental settings 

In all our experiments, we set the hidden state dimension of

RGNN to 256. For the NTU dataset, the human body is decom-

posed into K = 8 parts: two arms, two hands, two legs, one trunk
nd one head. For the SYSU dataset, N-UCLA dataset, the UTD-

HAD dataset and the UWA3D dataset, there are K = 5 parts: two

rms, two legs, and one trunk. The neuron size of LSTM cell in the

kip-clip LSTM layer is 512. During training, we randomly select N

rames to make a new sequence. During testing, we randomly se-

ect N frames with three times to create 3 sequences and the mean

core is used to predict the class. The frame number N of skele-

on sequence for the NTU, SYSU, N-UCLA, UTD-MHAD and UWA3D

ataset are 100, 100, 50, 50, and 50 respectively. The learning rate,

nitiated with 0.0 0 01, is reduced by multiplying it by 0.1 every 30

pochs. The network is optimized using the ADAM optimizer [58] .

ropout with a probability of 0.5 is utilized to alleviate overfitting

uring training. 

.2. Ablation study 

.2.1. Effectiveness of the HSRN and TSLN 

To validate the effectiveness of the proposed HSRN and TSLN

or representing spatial and temporal features, we conduct exper-

ments with different key model components on the five datasets.

he comparison results are shown in Table 1 . 

FC+LSTM For this model, the coordinate vectors of each body

art are encoded with the linear layer and three LSTM layers are

sed to model the sequence dynamics. It is also a two stream net-

ork to learn the temporal dynamics from position and velocity. 

HSRN+LSTM Compared with FC+LSTM, this model uses hierar-

hical spatial reasoning network to capture the high-level spatial

tructural features of skeleton sequences within each frame. 

FC+TSLN Compared with FC+LSTM, the temporal stack learning

etwork replaces three LSTM layers to learn the detailed sequence

ynamics for skeleton sequences. 

HSR-TSL (Position) Compared with our proposed model, the

emporal stack learning network of this model only contains the

osition network. 

HSR-TSL (Velocity) Compared with our proposed model, the tem-

oral stack learning network of this model only contains the veloc-

ty network. 

HSR-TSL It denotes our proposed model. 

View the effectiveness of the HSRN for skeleton-based action

ecognition. Compared with FC+LSTM and HSRN+LSTM, FC+TSLN

nd HSR-TSL in Table 1 , we can find that the HSRN consistently

chieves substantial improvements. For example, HSRN+LSTM in-

reases the performance by 4.9% on NTU dataset for cross-view

valuation and 19.4% on N-UCLA dataset due to replacing FC with

SRN. Unlike FC encoding the concatenation of joint coordinates,

he proposed HSRN can leverage not only the body-level structural

nformation but also the intra spatial relationships of joints in each

art with a hierarchical residual graph neural network. Further-

ore, we analyze the classification results with confusion matrix

n the N-UCLA dataset. Fig. 5 a and b show the confusion matri-

es of FC+LSTM and HSRN+LSTM , respectively. As shown in Fig. 5 a,

C+LSTM is very easy to misclassify the similar actions. For exam-

le, 31% samples of “pick up with one hand” are miscategorized to

pick up with two hands”. The reason for this is that FC+LSTM ne-

lects the spatial structural information so that it only focuses on

he process of “pick up”. Nevertheless, the HSRN+LSTM can clas-

ify these similar actions to some degree by using HSRN to explore

patial characteristics. The comparison results validate the impor-

ance of spatial structural information for skeleton-based action

ecognition and the effectiveness of the HSRN on modeling spatial

eatures. 

View the effectiveness of the TSLN for skeleton-based action

ecognition. Due to the powerful ability to capture the dynamics of

equences via cycles for RNN or LSTM, many methods apply RNN

r LSTM to extract discriminative temporal features from skele-

on sequence, such as [10–12,38–40,59] . In general, these methods
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Table 1 

The comparison results of analyzing the effectiveness of the HSRN and TSLN in accuracy (%). CS and CV 

denotes cross-subject and cross-view, respectively. 

Methods NTU SYSU N-UCLA UTD-MHAD UWA3D 

CS CV Setting-1 Setting-2 

FC + LSTM 76.3 84.5 50.3 50.7 67.9 77.2 66.5 

HSRN + LSTM 80.8 89.4 66.0 65.7 87.3 84.4 68.9 

FC + TSLN 84.7 92.1 79.2 78.8 83.4 83.9 77.0 

HSR-TSL(Position) 83.5 90.5 77.0 77.8 88.2 83.3 64.6 

HSR-TSL(Velocity) 84.5 92.2 72.7 71.8 91.4 85.1 68.6 

HSR-TSL (Ours) 87.7 94.4 82.5 82.8 94.8 94.4 77.9 

Fig. 5. Confusion matrix comparison on the N-UCLA dataset. (a), (b), (c) show the confusion matrices of the FC+LSTM, HSRN+LSTM and FC+TSLN, respectively. 

Fig. 6. The frames of “drop trash” and “walk around”. (a) “drop trash”, (b) “walk 

around”. 
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Fig. 7. The accuracy of the increasing clips on the testing set of NTU RGB+D dataset. 

o  

s

 

W  

c  

c  

h  

s  

t  

p  

e  

n

 

t  

t  

f  

F  

t

irectly process the entire skeleton sequences to learn temporal

ynamics and the last hidden representation of RNN or LSTM is

sed to recognize the actions. However, for long-term sequences,

uch as the sequences with more 100 frames on NUT dataset, the

ast hidden state may represent the temporal dynamics that oc-

ur quite a lot in the sequences, so that it may ignore the de-

ailed or instantaneous behavior features which may express the

rue action. For example, Fig. 6 shows the action “drop trash” and

walk around” on the N-UCLA dataset. The human walks all the

ime in the sequence of action “drop trash” and the behavior of

drop trash” only lasts for a very short time. As shown in Fig 5 a,

t is very confusing for FC+LSTM to recognize “drop trash” and

walk around”, the reason of which is that FC+LSTM focuses on

he features of “walk” and ignores the detailed temporal features

f “drop trash”. We propose a temporal stack learning network to

urther focus on modeling detailed temporal dynamics. The results

n Fig. 5 c illustrate that the FC+TSLN has better discriminatory per-

ormances. Furthermore, in Table 1 , we can observe FC+TSLN can
bviously improve the recognition performances on the long-term

equence datasets. 

We also show the process of temporal stack learning in Fig. 7 .

ith the increase of m , the much richer temporal information is

ontained in the representation of a sequence. And the network

an consider more temporal dynamics of the details to recognize

uman action, so as to improve the accuracy. Furthermore, the two

tream architecture of temporal stack learning network is effective

o learn the temporal dynamics from the velocity sequence and

osition sequence. The persuasive experimental results verify the

ffectiveness of the TSLN on exploring the detailed temporal dy-

amics for long-term sequences. 

Considering the importance of spatial structure information and

he detailed temporal dynamics for skeleton-based action recogni-

ion, the proposed HSR-TSL captures discriminative spatio-temporal

eatures to predict the action class. Therefore, compared with

C+LSTM, HSRN+LSTM and FC+T SLN , the HSR-T SL greatly increases

he performances on all datasets. 
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Table 2 

The comparison with the preliminary work [13] on NTU 

dataset in accuracy (%). 

HRGNN CS CV 

SRN + LSTM [13] 78.7 87.3 

FC + TSLN [13] 83.8 91.6 

SR-TSL [13] 84.8 92.4 

HSRN + LSTM 80.8 89.4 

FC + TSLN 84.7 92.1 

HSR-TSL (Ours) 87.7 94.4 
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Comparison with the preliminary work [13] . In this work, we

introduce a novel graph structure termed as hierarchical residual

graph neural network that is capable of learning not only the body-

level structural information between each part but also the intra

spatial relationship of joint in each part. As shown in Table 2 , HSRN

+ LSTM achieves better results than SRN + LSTM [13] that only fo-

cuses on the body-level structural information between each part.

This demonstrates that the proposed extension of HSRN is effective

to learn special information. Furthermore, instead of aggregating

all part features before TSLN, we apply TSLN to process each part

sequence to learn their unique temporal features then aggregate all

part features to predict human action classes. It can be seen that,

compared with FC + TSLN of [13] , FC + TSLN of this work further

improves the performances. With the extensions of spatial struc-

ture and temporal dynamic learning networks, our HSR-TSL signifi-

cantly outperforms the SR-TSL [13] . 

5.2.2. Influence of HRGNN 

HRGNN is proposed to model the structural relationships of

intra-parts and inter-parts. In order to analyze the influence of the

HRGNN designs, such as intra-RGNN, inter-RGNN and the resid-

ual design of RGNN, we conduct experiments on NTU, SYSU, N-

UCLA, UTD-MHAD and UWA3D datasets in Table 3 . We compare

our model with three baselines as follows: 

HSR-TSL w/o inter In HSR-TSL w/o inter , the HRGNN removes

inter-RGNN and only contains intra-RGNN to capture spatial struc-

tural information. 

HSR-TSL w/o intra In HSR-TSL w/o intra , the HRGNN removes

intra-RGNN and only contains inter-RGNN to capture spatial struc-
tural information. s  

Fig. 8. The accuracy of the baselines and our model on the testing set of NTU RGB+D data

evaluation, and cross-view evaluation, respectively. 
HSR-TSL w/o Res In HSR-TSL w/o Res , the HRGNN dose not con-

ain the residual design, which means that the relation representa-

ion r t 
k 

equals the node state s t 
k 

and is not calculated by Eq. (7) . 

Table 3 shows the results of the proposed HSR-TSL and the

hree baseline models. When only considering the spatial struc-

ural relationship between joints of each part with the intra-RGNN,

e can see that the performances of HSR-TSL are better than that

f HSR-TSL w/o inter . Similarly, HSR-TSL performs better than HSR-

SL w/o intra that only explores the body-level structural informa-

ion between each part with the inter-RGNN. The comparison re-

ults demonstrate that the proposed HRGNN is an effective frame-

ork to extract the intra spatial information of each part and

ody-level structural information between each part. In addition,

e analyze the necessity of the residual design of HRGNN. As

hown in Table 3 , compared with HSR-TSL w/o Res without the

esidual design, HSR-TSL obviously improves the performances due

o the residual design of HRGNN. The reason is that graph neu-

al network focuses on capturing the relationship features between

ach node so that the node hidden state may weaken the original

ode representation. The residual design of HRGNN aims to add

he relationship features between each joint/part based on their

ndividual features, so that the representations contain the fusion

f both features. 

.2.3. Influence of skip-clip LSTM and clip-based incremental loss 

For temporal features, the proposed TSLN focuses on leverag-

ng detailed temporal dynamics with three skip-clip LSTM layers.

he clip-based incremental loss is proposed to further promote the

bility of modeling the detailed temporal dynamics for long-term

keleton sequences. In order to demonstrate the effectiveness of

he Skip-Clip LSTM and clip-based incremental loss, we conduct

xperiments to compare our model with two baselines as follow: 

HSR-TSL w/o Skip In HSR-TSL w/o Skip , the TSLN uses the stan-

ard LSTM without the skip connections to learn temporal fea-

ures. 

HSR-TSL w/o ClLoss In HSR-TSL w/o ClLoss , we use standard

ross-entropy loss as the training loss instead of the clip-based in-

remental loss. 

The comparison results are shown in Table 3 . Compared with

SR-TSL w/o Skip, HSR-TSL has significantly performance improve-

ents on all datasets due to the skip-clip LSTM. The long-term

equences contain various temporal dependencies. The proposed

kip-clip LSTM can effectively capture the short-term temporal dy-
set during learning phase. (a) and (b) show the comparison results for cross-subject 
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Table 3 

The comparison results on five datasets in accuracy (%). We compare the performances of several variants 

and our proposed model to verify the effectiveness of some components, such as HRGNN, skip-clip LSTM 

and clip-based incremental loss. 

Methods NTU SYSU N-UCLA UTD-MHAD UWA3D 

CS CV Setting-1 Setting-2 

HSR-TSL w/o inter 86.5 93.4 80.6 81.0 91.8 85.6 77.3 

HSR-TSL w/o intra 86.3 93.4 80.0 80.7 89.2 86.7 77.2 

HSR-TSL w/o Res 85.7 93.0 74.5 77.0 86.4 75.4 65.4 

HSR-TSL w/o Skip 86.4 93.0 77.7 78.6 91.6 85.4 77.3 

HSR-TSL w/o ClLoss 85.6 92.4 80.5 80.4 93.1 91.6 77.1 

HSR-TSL (Ours) 87.7 94.4 82.5 82.8 94.8 94.4 77.9 

Table 4 

Comparison results with different time steps for the HRGNN 

on NTU dataset in accuracy (%). 

HRGNN Cross-Subject Cross-View 

T = 1 85.9 93.2 

T = 2 86.7 93.7 

T = 3 87.1 94.0 

T = 4 87.4 94.4 

T = 5 87.7 94.2 

T = 6 87.2 93.9 

Table 5 

Comparison results with different the length d of clips on 

NTU dataset in accuracy (%). 

TSLN Cross-Subject Cross-View 

d = 2 84.6 93.1 

d = 4 86.8 94.0 

d = 6 87.1 94.3 

d = 8 87.4 94.4 

d = 10 87.7 94.4 

d = 15 87.2 94.1 

d = 20 86.8 93.4 

Table 6 

Comparison results with different weights ( α1 , α2 ) of train- 

ing losses on NTU dataset in accuracy (%). 

α1 , α2 Cross-Subject Cross-View 

0.5, 0.8 87.3 94.2 

0.8, 0.5 87.4 94.2 

0.5, 1.0 87.4 94.2 

1.0, 0.5 87.5 94.3 

1.0, 1.0 87.7 94.4 
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Table 7 

The comparison results on NTU RGB+D dataset with Cross-Subject and 

Cross-View settings in accuracy (%). 

Methods Cross-Subject Cross-View 

Lie Group [27] 50.1 52.8 

Dynamic Skeletons [55] 60.2 65.2 

HBRNN-L [10] 59.1 64.0 

Part-aware LSTM [12] 62.9 70.3 

Trust Gate ST-LSTM [59] 69.2 77.7 

Two-stream RNN [39] 71.3 79.5 

STA-LSTM [11] 73.4 81.2 

Ensemble TS-LSTM [40] 74.6 81.3 

Visualization CNN [31] 76.0 82.6 

VA-LSTM [38] 79.4 87.6 

ST-GCN [45] 81.5 88.3 

HCN [32] 86.5 91.1 

PB-GCN [44] 87.5 93.2 

AGC-LSTM [46] (Part) 87.5 93.8 

JSR + JMR + BSR + BMR [36] 85.6 92.0 

SR-TSL [13] 84.8 92.4 

HSR-TSL (Ours) 87.7 94.4 

Table 8 

The comparison results on SYSU dataset in accuracy (%). 

Methods Setting-1 Setting-2 

LAFF [60] - 54.2 

Dynamic Skeletons [55] 75.5 76.9 

ST-LSTM + Trust Gate [42] - 76.5 

VA-LSTM [38] 76.9 77.5 

BNN [47] - 82.0 

LGN [34] - 83.3 

SR-TSL [13] 80.7 81.9 

HSR-TSL (Ours) 82.5 82.8 
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amics and the long-term dependencies between two adjacent

lips. In addition, we can observe that HSR-TSL achieves better per-

ormances compared with HSR-TSL w/o ClLoss on both datasets.

ig. 8 shows the accuracy of our model and the baselines on the

esting set of NTU RGB+D dataset during learning phase. We can

nd that the skip-clip LSTM and clip-based incremental loss can

peed up convergence and obviously improve the performance. 

.2.4. Influence of hyper-parameters 

We explore the effects of three important hyper-parameters:

he time step T of the HRGNN, the length d of clips and the

eights ( α1 , α2 , α3 ) of training losses. The comparison results are

hown in Tables 4–6 . For the time step T , we can find that the

erformance increases by a small amount when increasing T , and

aturates soon. We think that the body-level structural informa-

ion and the intra spatial relationships of joints in each part can
e learned quickly by the HSRN. For the length d of clips, with the

ncrease of d , the performance is significantly improved and then

ecreased. The reason of decreased is that learning short-term dy-

amic does not require too many frames for each clip. For the

eights ( α1 , α2 ) of training losses, it can be seen that the effect

f weights on performance is very small. This illustrates that our

roposed model is robust and effective for skeleton-based action

ecognition. 

.3. Comparisons to other state-of-the-art approaches 

In this section, we compare the performance of our proposed

odel against several state-of-the-art approaches on the NTU,

YSU, N-UCLA, UTD-MHAD and UWA3D datasets in Tables 7–11 , re-

pectively. 
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Table 9 

The comparison results on N-UCLA dataset in accuracy (%). 

Methods Accuracy 

Lie group [27] 74.2 

Actionlet ensemble [15] 76.0 

HBRNN-L [10] 78.5 

Visualization CNN [31] 86.1 

Ensemble TS-LSTM [40] 89.2 

AGC-LSTM [46] (Part) 90.0 

Clips + MTCNN [33] 93.4 

Skeleton Recovery [35] 94.4 

JSR [36] 90.9 

JMR [36] 84.4 

BSR [36] 89.4 

BMR [36] 87.4 

JSR + JMR + BSR + BMR [36] 95.0 

SR-TSL [13] 89.3 

HSR-TSL (Ours) 94.8 

Table 10 

The comparisons between our proposed method and state-of-the-art 

methods on UTD-MHAD dataset in accuracy (%). 

Methods Sensor Accuracy 

Cov3DJ [26] Kinect 85.6 

Kinect [22] Kinect 66.1 

Inertial [22] Inertial 67.2 

Kinect&Inertial [22] Kinect + Inertial 79.1 

JTM [30] Kinect 85.8 

Optical Spectra [61] Kinect 87.0 

3DHOT-MBC [23] Kinect 84.4 

JDM [28] Kinect 88.1 

BNN [47] Kinect 92.1 

JSR [36] Kinect 91.9 

JMR [36] Kinect 92.3 

BSR [36] Kinect 92.8 

BMR [36] Kinect 93.3 

JSR + JMR + BSR + BMR [36] Kinect 98.4 

SR-TSL [13] Kinect 93.1 

HSR-TSL (Ours) Kinect 94.4 
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5.3.1. NTU Dataset 

Following the two standard evaluation protocols in [12] , we

compare the proposed HSR-TSL with the previous state-of-the-art

methods, such as some traditional approaches based on hand-

crafted features [27,55] , RNN-based approaches [10–12,38–40,59] ,

CNN-based approaches [31,32] and graph-based models [44,45] .

Tables 7 shows the comparison results on the large-scale NTU

dataset. We can observe that our proposed method achieves the

best performances of 87.7% and 94.4% for cross-subject evaluation

and cross-view evaluation, respectively. Compared with VA-LSTM

[38] that is the current best RNN-based method for action recog-

nition, our results are about 8.3% and 6.8% better than VA-LSTM on

the NTU dataset. HCN [32] is the state-of-the-art CNN model. Our

performances significantly outperform the HCN [32] by about 1.2%

and 3.3% for cross-subject evaluation and cross-view evaluation,
Table 11 

The comparison results on UWA3D dataset in accuracy (%). 

Training views V1 & V2 V1 & V3 V1

Testing views V3 V4 V2 V4 V2

HOJ3D [25] 15.3 28.2 17.3 27.0 14.

AE [15] 45.0 40.4 35.1 36.9 34.

LARP [27] 49.4 42.8 34.6 39.7 38.

ESV (Synthesized + Pre-trained) [31] 72.3 76.3 64.7 75.5 63.

SR-TSL [13] 68.9 80.7 67.3 79.9 71.

HSR-TSL (Ours) 74.9 81.1 72.8 80.7 74.
espectively. In this work, we use a hierarchical spatial reasoning

etwork to capture the spatial structural features by a HRGNN. For

raph-based methods, the proposed HSR-TSL outperforms ST-GCN

45] , PB-GCN [44] , AGC-LSTM [46] on this dataset. Moreover, com-

ared with the preliminary work (SR-TSL) [13] , our HSR-TSL con-

istently achieves substantial improvements. 

.3.2. SYSU Dataset 

We follow the standard evaluation protocols in [55] for this

ataset. In the first setting (setting-1), for each activity class, half

f the samples are used for training and the rest for testing. In

he second setting (setting-2), half of subjects are used to train the

odel and the rest for testing. For each setting, there is 30-fold

ross validation. The averaged results of the two evaluation proto-

ols are shown in Table 8 . With hierarchical spatial reasoning and

emporal stack learning network, our method achieves competitive

esults with 82.5% and 82.8% in setting-1 evaluation and setting-2

valuation respectively, while the latest method [34] outperforms

urs by 0.5% in setting-2 evaluation. They need transform skeletons

o images inputs to the CNN by the skeleton visualization prepro-

essing. Hence, the computational cost of [34] is much higher than

ur model. Moreover, the CNN networks they leverage are signifi-

antly more complex than our model. 

.3.3. N-UCLA Dataset 

We follow the standard evaluation protocol in [56] . As shown

n Table 9 , our performances significantly outperform the state-of-

he-art methods [33,35,46] . Ensemble TS-LSTM [40] as the most

imilar work to ours employs multiple Temporal Sliding LSTM to

xtract short-term, medium-term and long-term temporal dynam-

cs respectively, which has similar functionality to our temporal

tack learning network. However, our method outperforms Ensem-

le TS-LSTM [40] by 2.6%. Li et al. [36] uses a four-stream CNNs

o extract features from Joint-Shape Representation (JSR), Joint-

otion Representation (JMR), Bone-Shape Representation (BSR)

nd Bone-Motion Representation (BMR), respectively. Although the

igh computational cost for the transformation of four Represen-

ations (JSR, JMR, BSR and BMR), we can see that our method

chieves better results than each individual Representation. And

ompared with the JSR + JMR + BSR + BMR [36] , our light model

lso achieves a competitive result. 

.3.4. UTD-MHAD Dataset 

We follow the cross-subject protocol proposed by Chen et al.

22] to evaluate the performance, where the samples of subjects 1,

, 5, 7 are used for training and subjects 2,4,6,8 are used for test-

ng. The results are shown in Table 10 . Compared with the previous

tate-of-the-art methods [23,28,47] , our HSR-TSL outperforms them

y a large margin. Compared with [36] , our method achieves bet-

er results than each individual Representation (JSR [36] , JMR [36] ,

SR [36] and BMR [36] ), while JSR + JMR + BSR + BMR [36] out-

erforms ours by about 4%. In JSR + JMR + BSR + BMR [36] , its

our-stream CNNs network is significantly more complex than our

odel and has higher computation cost. Therefore, our light model

an achieve competitive results for this task. 
 & V4 V2 & V3 V2 & V4 V3 & V4 Average 

 V3 V1 V4 V1 V3 V1 V2 

6 13.4 15.0 12.9 22.1 13.5 20.3 12.7 17.7 

7 36.0 49.5 29.3 57.1 35.4 49.0 29.3 39.8 

1 44.8 53.3 33.5 53.6 41.2 56.7 32.6 43.4 

5 74.0 83.1 75.1 82.4 71.1 83.5 63.5 73.8 

6 72.5 77.6 78.7 81.5 67.3 71.7 66.9 74.6 

0 72.5 83.5 80.7 82.0 72.1 83.5 76.8 77.9 
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.3.5. UWA3D dataset 

We follow the standard evaluation protocol in [57] on UWA3D

ataset. This dataset is observed from 4 views. It contains 12 kinds

f evaluation partitions. For each partition with the samples of 3

iews, two views are used as training data and the samples from

he remaining view are used as testing data. Table 11 shows the

omparison results on UWA3D dataset. Although this dataset is

hallenging due to varying viewpoints, our method outperforms

SV [31] by 4.1%. 

. Conclusions 

We present a novel model with hierarchical spatial reasoning

nd temporal stack learning for long-term skeleton based action

ecognition. The proposed hierarchical spatial reasoning network

an effectively capture the body-level structural information be-

ween each part and the intra spatial relationships of joints in each

art with a hierarchical residual graph neural network, while the

emporal stack learning network can model the detailed temporal

ynamics of skeleton sequences. A clip-based incremental loss is

mployed to further improve the ability of stack learning, which

rovides an effective way to solve long-term sequence optimiza-

ion. With extensive experiments on five challenging benchmarks,

e verify the contributions and demonstrate the effectiveness of

ur model for the skeleton based action recognition. The proposed

ethod, though having enabled unprecedented achievements, ig-

ores the co-occurrence relationship between spatial and temporal

omains. The effective coupling of spatial features into temporal

epresentations is an important subject that is worth exploring in

he future work. Moreover, inspired by the success of learning two-

evel spatial features for skeleton-based action recognition, learn-

ng the multi-scale temporal features is also an interesting topic

o enhance the discriminating of temporal representations. From a

iewpoint of the computational efficiency of graph neural network,

esigning a simple yet effective graph-based networks is very ben-

ficial for practical application of this task. 
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