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a b s t r a c t 

Recently, situation recognition as a new challenging task for image understanding has gained great at- 

tention, which needs to simultaneously predict the main activity (verb) and its associated objects (noun 

entities) in a structured and detailed way. Several methods have been proposed to handle this task, but 

usually they cannot effectively model the relationships between the activity and the objects. In this paper, 

we propose a Relational Graph Neural Network (RGNN) for situation recognition, which builds a neural 

graph on the activity and the objects, and models the triplet relationships between the activity and pairs 

of objects through message passing between graph nodes. Moreover, we propose a two-stage training 

strategy to optimize the model. A progressive supervised learning is first adopted to obtain an initial pre- 

diction for the activity and the objects. Then, the initial predictions are refined by using a policy-gradient 

method to directly optimize the non-differentiable value-all metric. To verify the effectiveness of our 

method, we perform extensive experiments on the Imsitu dataset which is currently the only available 

dataset for situation recognition. Experimental results show that our approach outperforms the state-of- 

the-art methods on verb and value metrics, and demonstrates better relationships between the activity 

and the objects. 

© 2020 Elsevier Ltd. All rights reserved. 

1

 

a  

i  

c  

w  

a  

i  

o  

a  

i  

t  

s  

c  

a  

t  

W

t

u  

t  

s  

o  

h

 

a  

F  

t  

n  

a  

v  

f  

j  

r  

s  

h  

h

0

. Introduction 

With the development of deep neural networks, the image and

ction classifications have achieved great success [1–3] . However,

t is not enough for deeper image understanding with single term

lassification. When seeing an image, we generate impressions of

hat is happening, who is doing the activity, what tools are used,

nd so on, not just the categories of the objects or the main activ-

ty in the image. Therefore, we need to analyze the activity, visual

bjects and their relations to better understand the image. There

re various visual tasks proposed for image understanding, such as

mage captioning [4–6] , visual question answering [7,8] and situa-

ion recognition [9–12] . Image captioning and visual question an-

wering build the bridge between vision and language, but they

annot understand the image in detail due to they aim to gener-

te the main scene or answer a particular problem. Different from

hem, situation recognition aims to get a structured and detailed
� Fully documented templates are available in the elsarticle package on CTAN . 
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nderstanding of an image, e.g., who is doing what using what

ools, where and when. Moreover, situation recognition is of great

ignificance for practical applications. For example, the robots and

ther intelligent agents need to understand the situation to decide

ow to react with the external environments. 

Situation recognition aims to predict the main activity (verb)

nd its associated objects (noun entities), which is illustrated in

ig. 1 . Given the image on the far left, the model aims to predict

hat the main activity is “jumping”, the source is “land”, the desti-

ation is “land”, the obstacle is “hurdle”, the place is “competition”,

nd the agent is “horse”. Situation recognition is a very challenging

isual task. First, a verb can occur in different situations with dif-

erent agents, e.g., “horse jumping”, “human jumping”, “kangaroo

umping” and “car jumping”. Second, different verbs own different

oles, e.g., “jumping” has the roles of “source”, “destination”, “ob-

tacle”, “place” and “agent” while “working”, as illustrated in Fig. 2 ,

as the roles of “place”, “focus” and “agent”. Third, in the Imsitu

ataset [9] , the training data can never contain all possible noun

ntities of every role. Inspired by the fact that the verb and the val-

es of roles (nouns) have strong relationships, e.g., the verb “work-

ng” and noun “project” are closely related to the agent “man”,

e model the relationships between the verb and noun entities to

olve this challenging task and predict the whole situation in the

https://doi.org/10.1016/j.patcog.2020.107544
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
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Fig. 1. Four situations corresponding to the verb “jumping” and its associated roles “source”, “destination”, “obstacle”, “place”, “agent”. Each image has the same verb and 

roles but different values (nouns), e.g., “horse jumping” in the first image has the values of “land”, “land”, “hurdle”, “competition”, “horse”, while “human jumping” in the 

second image has the values of “pier”, “water”, “ ”, “ocean”, “people”. This makes situation recognition a very challenging task because it needs to predict the verb and 

values simultaneously. 

Fig. 2. The architecture of the proposed relational graph neural network (RGNN). Two VGG-16s (verb CNN and noun CNN) are trained to predict the verb/nouns, and are 

further used to extract features to be put into the verb/role (noun) graph nodes. Here we show a 4-node neural graph for simplicity. The nodes are fully connected, and the 

verb/role nodes are denoted in green/blue color, respectively. p t v is the output of node v . During training, we propose a two-stage strategy which consists of a progressive 

supervised learning stage and a reinforcement learning stage. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 

this article.) 
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image. Some approaches have been proposed in this light. For ex-

ample, Yatskar et al. [9,11] use a Conditional Random Field (CRF)

[13] to model the relationships between verb-role-noun triplets.

Mallya and Lazebnik [12] propose a separate network to predict

the verb and a Recurrent Neural Network (RNN) [14] to model the

unidirectional relationships between neighbouring nouns. Different

from them, Lin et al. [10] propose a fully connected Graph Neural

Network (GNN) to model the relationships between nouns, where

all the relationships between nouns are modeled rather than the

only neighbouring relationships in RNN. However, none of these

methods emphasizes the importance of the verb during the rela-

tionship modeling. The verb is important due to the fact that an

activity is done by some agent nouns and thus determines the

roles of the nouns. In addition, the visual relationships are defined

as < subject, predicate, object > tuples, where “subject” is related

to the “object” by the “predicate” relationship. Based on these con-

siderations, we propose a verb based triplet relationships ( < noun1,

verb, noun2 > ) between the verb and pairs of nouns. 

After modelling this task, traditional methods use the cross en-

tropy loss to train the model and adopt the non-differentiable test

metrics such as value and value-all [9] to evaluate the perfor-
ance. There are some differences between the cross entropy loss

nd test metrics. The ideal model for situation recognition should

e trained to directly optimize the test metrics. Recently, with

he development of Reinforcement Learning (RL) [15,16] , the non-

ifferentiable test metric issues can be addressed. The RL allows to

irectly optimize the expected reward by sampling from the model

uring training. Based on this, to harmonize the training and test-

ng procedures, we propose to utilize the reinforcement learning

o train the model. To the best of our knowledge, we are probably

he first to employ RL to handle the task of situation recognition. 

In this paper, we propose a Relational Graph Neural Network

RGNN) for situation recognition, which builds a neural graph on

he activity and the objects, and models the triplet relationships

etween the verb and pairs of nouns through message passing be-

ween graph nodes. Fig. 2 shows the main architecture of RGNN.

irst, we adopt two VGG-16 (verb CNN and noun CNN) networks

1] to predict the verb and nouns, respectively. Then, the verb and

oun features are put into the corresponding graph nodes in the

GNN. In Fig. 2 , the verb and role (noun) nodes are denoted in

reen and blue, respectively. The hidden state of the graph node

s updated based on its previous hidden state and the messages
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rom its neighbors in a recurrent way. More specifically, the mes-

age to the verb node only contains the previous hidden states of

he neighbor role nodes, while the message to the role node is de-

ned as the triplet < noun1, verb, noun2 > consisting of the pre-

ious hidden states of the verb node, the neighbor role node and

tself. Note that the graphs in Fig. 2 are simplified graphs. 

After iterating the message passing through the graph for sev-

ral times, we use the node representations to predict the situ-

tion. During training, we first propose a progressive supervised

earning to obtain an initial prediction. Then, we further improve

ur model by using a policy-gradient method to directly optimize

he non-differentiable value-all metric. With this training strategy,

e can harmonize the training and testing procedures. Our pro-

osed method is evaluated on the challenging dataset ImSitu [9] .

xperimental results show that our method can effectively model

he relationships between the verb and nouns, and outperforms

he state-of-the-art methods on verb and value metrics. 

The main contributions of our work are summarized as follows:

1. We propose a novel Relational Graph Neural Network for situ-

ation recognition, which explicitly models the triplet relation-

ships between the activity (verb) and the objects (nouns). 

2. We propose a progressive supervised learning method which

incrementally adds the weights to the cross entropy loss. 

3. To harmonize the training and testing procedures, we use

a policy-gradient method to directly optimize the non-

differentiable value-all metric. 

The remainder of this paper is organized as follows. In

ection 2 , we introduce related work of image understanding, situ-

tion recognition, graph neural networks and reinforcement learn-

ng. In Section 3 , we introduce our RGNN model in detail. We

resent the experimental results in Section 4 . Finally, we conclude

ur work in Section 5 . 

. Related work 

In this section, we briefly introduce related work, including pre-

ious image understanding tasks which are similar to our goal,

ome prior studies on situation recognition, graph neural networks

hich inspire our model, as well as reinforcement learning. 

.1. Image understanding 

Image understanding is of great significance and has attracted

uch attention. In many cases, we pay more attention to the ac-

ivity in the image. Accordingly, recognizing activity [2,17,18] in still

mages has been widely studied and achieved great progress. These

ethods mainly focus on the human activity [19] and some prior

orks [20,21] use detection methods by detecting a bounding box

bout the human to recognize the activity in the image. Different

rom them, our work in predicting the main activity includes not

nly the human activity but also the animals activity and objects

ctivity. 

Except the activity recognition, various image understanding

asks have been proposed to understand the image more compre-

ensively, such as image question answering [7,8] , image caption-

ng [4,5] , visual relationship detection [22,23] and semantic role

abeling [24,25] . Given an image and a natural language question

bout the image, image question answering aims to provide an ac-

urate answer. Therefore a model that is able to answer the ques-

ion correctly will understand the image more detailedly. Mali-

owski et al. [26] propose a combination of Long Short Time Mem-

ry (LSTM) [27] and Convolutional Neural Network (CNN) [28] for

mage question answering, where LSTM is to encode the question

nd CNN is to extract the image features. Image captioning gener-

tes a natural language sentence to describe the content of an im-
ge. Different from our work, image question answering only needs

o understand the image regions of a particular problem and image

aption aims to generate the main scene but not the specific ob-

ects. Visual relationship detection [22,29] is also an important task

n image understanding. Dai et al. [29] propose a deep relational

etwork to detect the visual relationships. In order to recognize all

elationships in image, Zhang et al. [22] first detect all individual

bjects and then classify all pairs. Semantic role labeling [24,25] is

imilar to situation recognition. They both define one particular

erb with verb-role-noun triplets. Although there are some differ-

nces, semantic role labeling should not only recognize the activity

n an image, but also localize the objects of interaction. 

.2. Situation recognition 

Yatskar et al. [9] propose the task of situation recognition and

hey use a CRF to model the relationships between verb-role-noun

riplets. However, there is semantic sparsity in situation recogni-

ion, where most role-noun combinations are rare. To solve this

roblem, Yatskar et al. [11] further propose a modified CRF with

hared nouns between different roles, which achieves a better per-

ormance than the original CRF. Different from [9,11] , Mallya and

azebnik [12] use a separate network which is a specialized ac-

ion recognition architecture of [30] to predict the verb, and a RNN

o predict nouns. Li et al. [10] propose a fully connected GNN to

odel the relationships between nouns. But all of these methods

o not explicitly emphasize the importance of verb during the re-

ationship modeling and train the model with the general cross en-

ropy loss. 

.3. Graph neural networks 

Graph neural networks are generally used to handle graph

tructured data, which can be divided into two categories. The

rst class operates convolutional neural networks directly on graph

31,32] . The second class operates convolutional neural networks

n every node of the graph in a recurrent way. The messages

rom the neighbor graph nodes are accumulated and propagated

o other nodes, which models the relationship between nodes.

here are many studies on the updating of the node hidden state.

carselli et al. [33] propose a multi-layer perceptrons (MLP) to

pdate the hidden state. Gated Graph Neural Network (GGNN)

34] uses gated recurrent units to update the hidden state. Liang

t al. [35] update the hidden state based on LSTM. In addition,

alm et al. [36] propose recurrent relational networks in a graph to

olve the multi-steps relational reasoning task. Si et al. [37] use a

raph neural network for skeleton-based action recognition. In this

aper, we propose a Relational Graph Neural Network to model

he triplet relationships between the activity (verb) and the objects

nouns). 

.4. Reinforcement learning 

Reinforcement learning aims to learn a policy which is used to

ecide a series of actions by maximizing the cumulative future re-

ards. The challenging task of Go game [38] can be successfully

olved by reinforcement learning algorithms. Recently, RL has re-

eived increasing popularity in sequence generation, such as visual

aptioning [39] , text summarization [40] , and machine translation

41] . Different from the traditional cross entropy loss, reinforce-

ent learning can directly use the test metrics as reward and up-

ate model parameters via policy-gradient. In this paper, we pro-

ose to employ policy-gradient to directly optimize the value-all

etrics during training. 
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3. Our model 

In this section, we introduce the proposed relational graph neu-

ral network in detail. First, we introduce the task definition. Next,

we explain the model architecture and the message passing in

RGNN. Finally, we describe the two-stage training procedure. 

3.1. Task definition 

The situation S is associated with a set of discrete verbs V ,

roles R and nouns N . Each image I owns one verb v ∈ V which is

paired with a frame f ∈ F derived from FrameNet [42] . Each frame

is paired with a set of semantic roles R v ∈ R , and each seman-

tic role e ∈ R v is paired with a noun n ∈ N ∪ { ∅ }, where ∅ indi-

cates that this noun is either not known or not applied. The nouns

are drawn from WordNet [43] . The realized frame F ( I, v ) is defined

as F (I, v ) = { (e m 

, n m 

) | e m 

∈ R v , n m 

∈ N ∪ {∅} , m = 1 , . . . , | R v |} , e.g., in

Fig. 1 , the realized frame of the first image is {( source, land ), ( des-

tination, land ), ( obstacle, hurdle ), ( place, competition ), ( agent, horse )}.

Finally, the situation is paired with a verb and a realized frame,

S = { v , F (I, v ) } . Given an image, the task is to predict the situation.

Although an image has a unique verb, the nouns can be different,

which potentially causes an image associated with multiple situa-

tions. 

3.2. Relational graph neural network 

In a situation, the verb and nouns influence each other, e.g., in

Fig. 2 , the verb “working” and the noun “project” are closely re-

lated to the agent “man”. The relationships between them are sig-

nificant for recognizing the situation. In addition, the verb is im-

portant due to the fact that it is done by some agent nouns and it

determines the roles of the nouns. Therefore, we model the triplet

relationships between the verb and nouns. We propose a graph

G = (A, B ) , where A represents the node a ∈ A including verb node

and role node in graph, B represents the edge b ∈ B between nodes

including verb-role edge and role-role edge. Our graph has 7 nodes

including 1 verb node and 6 role nodes, which corresponds to the

fact that a verb is associated with at most 6 roles in the Imsitu

dataset. For images with less than 7 nodes, we set all the hidden

states, input messages, and output messages of unused nodes to

zero at every time step, so they cannot receive or send any infor-

mation. Fig. 2 shows the simplified graph model where verb and

role nodes are fully connected. 

Each node in the RGNN has a hidden state h ∈ R 

D , and we ini-

tialize h as zero: 

h 

0 
a v 

= 0 , (1)

h 

0 
a n 

= 0 , (2)

where h 0 a v is the initial hidden state of the verb node a v , and h 0 a n 
is the initial hidden state of the role node a n . 

To utilize the initial features of image, we initialize the message

x as follows: 

x 0 a v 
= g(W v f v (I)) , (3)

x 0 a n 
= g(W n f n (I) � W e e � W ˆ v ̂  v ) , (4)

where x 0 a v and x 0 a n 
are the initial messages of verb node and role

node, respectively. f v ( I ) is the feature map extracted from the verb

CNN, f n ( I ) is the feature map extracted from the noun CNN, W v 

and W n are used to transform image features to the messages,

 e ∈ R 

D ×| R | is the role embedding matrix, W ˆ v ∈ R 

D ×| V | is the verb

embedding matrix, ˆ v is the predicted verb from the verb CNN, e is
he role associated with the predicted verb. � indicates element-

ise multiplication, and g is a non-linear function of RELU (g(x ) =
ax (0 , x )) . This kind of initialization integrates visual information

ith textual information. 

At time-step t , each node gets an incoming message from all

he other nodes in the graph. The messages are defined as follows:

 

t 
a v 

= 

∑ 

(a n ,a v ) ∈ A 
W a n g(h 

t−1 
a n 

) + b a v , (5)

 

t 
a n 

= 

∑ 

(a ′ n ,a n ,a v ) ∈ A 
W a n ,a ′ n g([ h 

t−1 
a n 

: h 

t−1 
a v 

: h 

t−1 
a ′ n 

]) + b a n , (6)

here a n and a ′ n indicate the role node and its neighbor role nodes,

espectively. W a n ,a ′ n indicates the weight matrix between a n and a ′ n .
t should be noted that W a n ,a ′ n = W a ′ n ,a n . 

Due to the fact that the verb is done by some agent nouns and

t determines the roles of the nouns, we send verb information

o each role node. Moreover, the nouns interact with each other.

herefore in the message x t a n , we build a triplet relationship be-

ween the verb and the nouns as g ([ n 1 : v : n 2 ]). Fig. 3 shows the

etailed procedure of message passing. 

The hidden states of the graph nodes are updated in a similar

ay to Gated Recurrent Unit (GRU) [34] : 

 

t 
a = σ (W r x 

t 
a + U r h 

t−1 
a + b r ) , (7)

 

t 
a = σ (W z x 

t 
a + U z h 

t−1 
a + b z ) , (8)

 

t 
a = (1 − z t a ) � h 

t−1 
a + z t a � tanh (W h x 

t 
a + U h (r t a � h 

t−1 
a ) + b h ) , (9)

here W r , U r , b r , W z , U z , b z , W h , U h , b h are the parameters to be

earned. In this way, nodes can combine the messages with mem-

ries to determine their hidden states of the next time. 

After iterating the message passing for T steps, we obtain the fi-

al hidden representations which are used to predict the verb and

ouns. 

Different from RNN, our model updates the hidden state of all

odes simultaneously. We can think of RNN in this way, the RNN

pdates one node every time step. Updating all nodes in parallel

ay seem like to be oscillatory, but every node can memory its

istory and determine the hidden state at next time step due to

he recurrent updating way. 

.3. Learning RGNN 

We propose a two-stage training strategy: progressive super-

ised learning for initial prediction and reinforcement learning for

efining prediction. 

rogressive supervised learning 

After updating the hidden states of the graph nodes at time-

tep t , we input the hidden state to go through a softmax layer to

redict the verb and nouns: 

p t v = sof tmax (W h v h 

t 
a v 

+ b p v ) , (10)

p t n = sof tmax (W hn h 

t 
a n 

+ b p n ) , (11)

here p t v and p t n are the probability distribution over the verb and

ouns space at time-step t. W hv , b p v and W hn , b p n are the parame-

ers of two linear transformation layers. 
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Fig. 3. The illustration of message passing in the relational graph neural network. The nodes are updated by the received messages in a recurrent way. The dashed lines 

indicate the recurrent connections. (a) the message to verb node v from three role nodes i, p, m at time-step t . (b) the message to role node i from triplet nodes at time-step 

t. h is the hidden state of graph node. W indicates the weight matrix. Best viewed in colors. 
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A progressive cross entropy loss between the output probability

nd the target label is defined as follows: 

 = 

1 

K 

T ∑ 

t=1 

λt 

K ∑ 

k =1 

3 ∑ 

j=1 

T ∑ 

t=1 

λt [ y 
k, j 
v log (p k,t 

v ) + 

1 

| R 

k, j 
v | 

∑ 

n 

y k, j 
n log (p k,t 

n )] , 

(12) 

here K is the number of images in a training batch, j indicates

he three annotated frames for each image, | R k, j 
v | is the number of

ouns for verb y 
k, j 
v , and λt is the weighting coefficient of the loss

t time-step t . 

We set λt = t/T for two reasons. First, computing the loss at

ach time step speeds up the convergence of our model training.

econd, in the experiments we find that weighting the loss incre-

entally along the time step shows better results than the other

eighting strategies. It should be noted that during testing, we

nly adopt the hidden states of the last time step to predict the

erb and nouns. 

einforcement learning 

Situation recognition systems are traditionally trained with the

ross entropy loss and evaluated with value and value-all metrics.

n order to harmonize the training and testing procedures, we use

 policy-gradient method to further train the model, which directly

ptimizes the value-all metric generally evaluated during testing. 

Different from the supervised learning in the first stage, we re-

ise the proposed relational graph neural network, and predict the

ituation in a sequential decision making way, e.g., predict a word

verb or noun) at each time step. Fig. 4 shows the illustration of

he reinforcement learning procedure. More specifically, we treat

he RGNN model as an “agent” that interacts with the “environ-

ent”, e.g., generated situation and extracted image features. The

policy” p θ is the network parameters θ , and the “action” is to pre-

ict the next verb or noun under this policy. The internal “state” of

he agent is defined as the hidden states of the nodes. After taking

n action, the internal state is updated. The “reward” r is defined

s the value-all score with the generated verb and nouns. The goal

f our model is to maximize the reward, therefore the loss function

s defined as follows: 

 = −E w ∼p θ [ r(w )] , (13) 

here w = (w 1 , w 2 , . . . , w T ) are the words (verb and nouns) sam-

led from the model. We use the reinforce algorithm [44] to com-

ute the gradient of the loss, which is defined as follows: 

 θ L = −E w ∼p θ [ r(w ) ∇ θ log p θ (w )] , (14) 
To reduce the variance of the gradient estimate, the policy-

radient can be generalized to compute the reward associated with

 baseline: 

 θ L = −E w ∼p θ [(r(w ) − b) ∇ θ log p θ (w )] , (15) 

here b is the reward of the baseline model. In this work, b is

he value-all score which is computed using the current learned

odel, as shown in Fig. 4 , r ( W 

m ) is the baseline reward. 

In this way, the model is trained directly on the evaluation met-

ic, which can harmonize the training and testing procedures. At

he same time, the usage of the baseline model can stabilize the

raining procedure. 

. Experiments 

In this section, we first introduce the experimental dataset and

valuation metrics. Then, we present the implementation details.

ext, we compare the proposed method with the state-of-the-art

ethods and several baselines. Finally, we visualize the prediction

esults and analyze the results. 

.1. Dataset and metrics 

We perform extensive experiments on the Imsitu dataset which

s currently the only dataset available publicly for situation recog-

ition, and adopt the similar evaluation metrics to [11] . 

msitu 

This dataset has 75k, 25k and 25k images for the train, devel-

pment and test sets, respectively. Each image is associated with

ne verb and three annotations. Therefore, one image can have dif-

erent situations. In these sets, there are totally 504 verbs, 11,538

ouns and 190 roles. It should be noted that there are around 1500

ouns which do not appear in the training set. In addition, al-

hough each image has three annotations, the entire situation in

mage can never be covered. 

etrics 

The accuracies of the verb prediction (verb) and role-noun pair

rediction (value, value-all) are computed in our experiments. The

alue metric measures the percentage of the predicted semantic

erb-role-noun tuple matched with any of the three ground truth

nnotations, while the value-all metric measures the percentage of

ll the predicted semantic verb-role-noun tuples matched with any

f the three ground truth annotations. The top-1, top-5 accuracies

nd the average of all measures (mean) are reported in our exper-

ments. 
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Fig. 4. The illustration of the reinforcement learning procedure. The final reward is defined as the difference between the reward obtained by the sampled words and the 

reward for the greedily estimated words. This training strategy harmonizes the training procedure with the inference procedure. 
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4.2. Implementation details 

We finetune two pre-trained VGG-16 (verb CNN and noun CNN)

networks on Imsitu to extract the fc7 feature map as [10] . The

first VGG-16 network is trained to predict verbs, and the second

VGG-16 network is trained to predict nouns. Due to the fact that

the number of training samples in each category is not the same,

we use weighted loss as [12] to handle the unbalanced training

data. The proposed RGNN has 1024 nodes for the input and hid-

den layers, and predicts 504 verbs and 11,538 nouns, respectively.

The VGG-16 networks are trained with stochastic gradient descent

with momentum. The initial learning rate is 1 e −4 and decays by a

factor of 0.1 every 20 epochs. The RGNN is trained with RMSProp

[45] using an initial learning rate of 1 e −3 and a decay factor of

0.85 every 10 epochs. At the final stage, we finetune the VGG-16

and RGNN together with an initial learning rate of 1 e −5 with the

same learning rate decay strategy as RGNN. During training, we use

a mini-batch size of 64 all the time. Our model is implemented in

Tensorflow [46] . Note that in the two-stage training strategy, we

reuse the training set. 

We train our model at the training set, and the development set

is used to evaluate during training and tune the hyperparameters.

We evaluate the best model at the test set. 

4.3. Experimental results 

To verify the effectiveness of our RGNN model, we perform ex-

tensive experiments on the Imsitu. Table 1 shows the comparison

results on the Imsitu development set. The top five rows are the

results of several state-of-the-art methods, e.g., CNN+CRF [9] , Ten-

sor Composition (DataAug) [11] , Fusion VGG+RNN [12] and Fully-

connected Graph [10] . It should be noted that the Tensor Composi-

tion + DataAug method [11] on the third row uses additional data

to train its model, while the other methods only use the Imsitu

training set to train their models. Due to the fact we cannot repro-
uce the results of [10] , we also present the results of our imple-

entation to [10] on the sixth row. 

We can see that our RGNN outperforms the start-of-the-art per-

ormance on value metric with top-1, top-5 predicted verbs and

round truth verbs, which are 28.33%, 48.07% and 71.27%, respec-

ively. Although [10] also utilizes the graph to model the relation-

hips between verb and nouns, our triplet relationships graph neu-

al network improves the value performance by about 2.5% with

round truth verbs. Tensor Composition [11] uses five million web-

ourced images in addition to the 75k training set images to train

he model. Comparing with it, our better results in Table 1 verify

he effectiveness of the RGNN model. 

In addition, our RGNN obtains the best performances on top-1

nd top-5 verb metrics, which are 37.56% and 64.57%, respectively.

f comparing with the original reported results in Li et al. [10] , our

odel achieves the second best performance on value-all metric.

f comparing with the results of our implementation to [10] , our

odel still achieves the best performance on value-all metric. The

etter performances above demonstrate that our method can ef-

ectively model the relationships between the verb and nouns. 

Table 2 shows the comparison results with the state-of-the-art

ethods on the full Imsitu test set. The trend of these results is

imilar to that on the ImSitu development set. We obtain the best

erformance on verb and value metrics with top-1, top-5 predicted

erbs and ground truth verbs. 

blation analysis 

The number of message propagation T in RGNN is an impor-

ant hyperparameter, which determines the information transmit-

ed between the verb and nouns. From the results reported in

able 3 , we can see that increasing T improves the prediction per-

ormance and saturates soon. Our model achieves the best perfor-

ance when T = 4 . In order to investigate the three key compo-

ents in RGNN, e.g., the triplet relational modeling, the progres-

ive supervised learning and the reinforcement learning, we per-

orm ablation analysis on the Imsitu dataset by dropping one of
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Table 1 

Experimental results on the full development set against state-of-the-art models. The sixth row shows the results of our implementation 

to [10] . Our RGNN achieves the best performance on verb and value metrics. If comparing with the results of our implementation to 

[10] , our RGNN also achieves the best performance on value-all metric. The best performance is bold and the second is italicized . 

Method 

top-1 predicted verb top-5 predicted verbs ground truth verbs 

verb value value-all verb value value-all value value-all mean 

CNN + CRF [9] 32.25 24.56 14.28 58.64 42.68 22.75 65.90 29.50 36.32 

Tensor Composition [11] 32.91 25.39 14.87 59.92 44.50 24.04 69.39 33.17 38.02 

Tensor Composition + DataAug [11] 34.20 26.56 15.61 62.21 46.72 25.66 70.80 34.82 39.57 

Fusion VGG + RNN [12] 36.11 27.74 16.60 63.11 47.09 26.48 70.48 35.56 40.40 

Fully-connected Graph [10] 36.93 27.52 19.15 61.80 45.23 29.98 68.89 41.07 41.32 

Fully-connected Graph (our re-im) 36.64 26.21 16.03 62.78 44.62 24.72 66.48 32.84 38.79 

Our RGNN 37.56 28.33 18.24 64.57 48.07 28.46 71.27 37.32 41.73 

Fig. 5. The message propagated between different nodes in a graph. Blue indicates more messages are propagated between nodes, while green indicates there is no message. 

Every column is normalized to 1. Best viewed in colors. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 

Table 2 

Experimental results on the full test set against state-of-the-art models. The sixth row shows the results of our implementation to [10] . 

Our RGNN achieves the best performance on verb and value metrics. If comparing with the results of our implementation to [10] , our 

RGNN also achieves the best performance on value-all metric. The best performance is bold and the second is italicized . 

Method 

top-1 predicted verb top-5 predicted verbs ground truth verbs 

verb value value-all verb value value-all value value-all mean 

CNN + CRF [9] 32.34 24.62 14.19 58.88 42.76 22.55 65.66 28.96 36.25 

Tensor Composition [11] 32.96 25.32 14.57 60.12 44.64 24.00 69.20 32.97 37.97 

Tensor Composition + DataAug [11] 34.12 26.45 15.51 62.59 46.88 25.46 70.44 34.38 39.48 

Fusion VGG + RNN [12] 35.90 27.45 16.36 63.08 46.88 26.06 70.27 35.25 40.16 

Fully-connected Graph [10] 36.72 27.52 19.25 61.90 45.39 29.96 69.16 41.36 41.40 

Fully-connected Graph (our re-im) 36.69 26.23 15.94 63.12 44.86 24.48 66.32 31.97 38.70 

Our RGNN 37.43 28.04 18.11 64.61 48.12 28.42 71.02 37.10 41.61 

Table 3 

Ablation analysis. We investigate the steps of message propagation T , the triplet relational modeling, the 

progressive supervised learning and the reinforcement learning in RGNN. The experimental results show 

that when T = 4 our model achieves the best performance. The triplet relational modeling boosts the value 

and value-all metrics a lot and plays the most important role in RGNN. 

Method 

top-1 predicted verb ground truth verbs 

verb value value-all value value-all 

T = 1, Relational, Reinforcement, Loss = 

∑ 

loss t 36.72 27.57 17.56 70.20 36.15 

T = 2 , Relational, Reinforcement, Loss = 

∑ 

loss t 36.91 27.64 17.87 70.45 36.21 

T = 3 , Relational, Reinforcement, Loss = 

∑ 

loss t 37.24 27.85 17.94 70.74 36.53 

T = 4 , Relational, Reinforcement, Loss = 

∑ 

loss t 37.43 28.04 18.11 71.02 37.10 

T = 5 , Relational, Reinforcement, Loss = 

∑ 

loss t 37.25 27.81 17.84 70.62 36.49 

T = 4 , Reinforcement, Loss = 

∑ 

loss t 37.17 26.75 16.87 67.22 33.04 

T = 4 , Relational, Reinforcement 37.31 27.80 17.94 70.59 36.78 

T = 4 , Relational, Loss = 

∑ 

loss t 37.28 27.74 17.61 70.26 36.05 

T = 4 , Relational, Reinforcement, Loss = 

∑ 

loss t 37.43 28.04 18.11 71.02 37.10 
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Fig. 6. The distribution diagram of the verb accuracy by our RGNN network. The horizontal axis indicates 504 different verbs and the accuracy ranges from 0 to 1. 

Fig. 7. Prediction results from one-stage and two-stage training methods with top-1 predicted verb on the Imsitu dataset. Roles are marked with green background. One- 

stage nouns are marked in pink background and two-stage nouns are marked in yellow background. Incorrect predictions are highlighted in red, while the black indicates the 

correct prediction. One-stage method means dropping the reinforcement learning. Best viewed in colors. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

t

V

 

d  

i  

f  

a  

H  

i  

p  

o  

a  

t

R

 

w  

F  

r  

T  

a  
them. Table 3 reports the experimental results of these three de-

graded variants. The sixth row does not model the triplet relations

between verb and nouns, the seventh row does not use the pro-

gressive supervised learning loss and the eighth row drops the re-

inforcement learning stage. The results of the top-1 predicted verb

and ground truth verbs are reported. We can see that the per-

formance decreases when dropping one of the three key compo-

nents in RGNN. It should be noted that the triplet relational mod-

eling boosts the value and value-all metrics a lot (about 3.8% and

4.1%) with ground truth verbs, which plays the most important role

in RGNN. The combination of these three key components finally

achieves the best performance, which demonstrates the effective-

ness of our RGNN. 

Message propagation analysis 

To analyze the message propagated between different nodes,

we show the message matrix including the incoming messages

from other nodes in Fig. 5 , where blue indicates more informa-

tion is propagated and green indicates no information is propa-

gated. Every column is normalized to 1. We can see that for the

verb “launching”, the “place”, “agent” and “source” pay more at-

tention to the “item” which is rocket. The “substance” and “item”
re important for the verb “soaking”. And the “item” pay more at-

ention to the “container”. 

erb analysis 

To analyze the verb prediction in our experiments, we show the

istribution diagram of the verb accuracy by our RGNN network

n Fig. 6 . We can see that the accuracies of different verbs range

rom 0 to 1. There are some kinds of activities that are recognized

lmost entirely correctly, e.g., “ballooning”, “rafting” and “skiing”.

owever, there are also two kinds of activities that are recognized

ncorrectly, e.g., “making” and “encouraging”. The reason for this

henomenon is that “making” is a more general activity and can

ccur in many different situations, while “skiing” is a more specific

ctivity and will happen in specific situation. Therefore recognizing

he general activity more effectively is still a challenging task. 

ole-noun analysis 

To analyze the noun accuracy of each role in our experiments,

e show the noun prediction accuracies of 190 different roles in

ig. 8 . We can see that there are about 60% roles whose noun accu-

acies are higher than the average performance (0.7102 in Table 2 ).

hese roles include “sprouter”, “path” and “lock”, and they almost

ppear in only one verb. The roles whose noun accuracies are
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Fig. 8. The distribution diagram of the noun accuracy according to 190 roles by our RGNN network. The horizontal axis indicates 190 different roles and the nouns accuracy 

of each role ranges from 0.28 to 1. 

Fig. 9. Prediction results from our RGNN with top-1 predicted verb on the Imsitu dataset. Each image is predicted with a verb and a set of role-noun pairs. Below the verb, 

the roles are in the left column and the corresponding nouns are in the right column. Incorrect predictions are highlighted in red, while the black indicates the correct 

prediction. GT indicates the ground truth annotation and PRED indicates the predicted situation. Best viewed in colors. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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lower than average performance appear in different verbs and have

different image representations. 

Prediction visualization 

Fig. 9 shows some prediction results on the Imsitu dataset from

our RGNN. The incorrect predictions are highlighted in red . The top

row shows some examples that the entire structures are predicted

correctly. This means that the metric value-all scores correctly. It

should be noted that the roles are closely related to help each

other choose the correct nouns, e.g., the “food”, “tool” and “agent”

in the fourth image. The middle row shows some examples that

the predicted verbs are correct while some predicted nouns are

wrong. The first case predicts the “boxing match” as “basketball

match” due to the fact that the basketball match is much more in

the training set. However, some nouns seem plausible, e.g., in the

second image, the predicted agent “man” and place “inside” seem

correct but are not found in ground truth annotations. The last row

shows some examples that the predicted verbs are wrong, while

some predicted role-noun pairs are correct. In the third image, al-

though we predict “autographing” as “reading”, we can still predict

the correct “item”, “place” and “agent”. 

To show the effectiveness of reinforcement learning more intu-

itively, we compare the prediction results from one-stage and two-

stage training methods. The one-stage method means that we drop

the reinforcement learning. Fig. 7 shows the results, where one-

stage nouns and two-stage nouns are marked in pink background

and yellow background, respectively. We can see that the one-stage

learning method fails to recognize some nouns while the two-stage

learning method is able to recognize the situation in image cor-

rectly. 

5. Conclusion and future work 

In this paper, we have proposed a Relational Graph Neural Net-

work for situation recognition by modelling the triplet relation-

ships between the activity and pairs of objects on the graph net-

work. We have also proposed a two-stage training strategy to opti-

mize the model. The experimental results on a challenging dataset

have shown that our approach outperforms the state-of-the-art

methods on verb and value metrics, and obtains better relation-

ships between the activity and objects. From the experiments we

can see that the verb prediction is still a major challenge for sit-

uation recognition. In the future, we will devote more to activity

recognition. 
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