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Abstract. We consider the problem of semi-supervised 3D action recog-
nition which has been rarely explored before. Its major challenge lies
in how to effectively learn motion representations from unlabeled data.
Self-supervised learning (SSL) has been proved very effective at learn-
ing representations from unlabeled data in the image domain. However,
few effective self-supervised approaches exist for 3D action recognition,
and directly applying SSL for semi-supervised learning suffers from mis-
alignment of representations learned from SSL and supervised learning
tasks. To address these issues, we present Adversarial Self-Supervised
Learning (ASSL), a novel framework that tightly couples SSL and the
semi-supervised scheme via neighbor relation exploration and adversarial
learning. Specifically, we design an effective SSL scheme to improve the
discrimination capability of learned representations for 3D action recog-
nition, through exploring the data relations within a neighborhood. We
further propose an adversarial regularization to align the feature distri-
butions of labeled and unlabeled samples. To demonstrate effectiveness of
the proposed ASSL in semi-supervised 3D action recognition, we conduct
extensive experiments on NTU and N-UCLA datasets. The results con-
firm its advantageous performance over state-of-the-art semi-supervised
methods in the few label regime for 3D action recognition.

Keywords: Semi-supervised 3D action recognition · Self-supervised
learning · Neighborhood consistency · Adversarial learning

1 Introduction

Recently, 3D action recognition (a.k.a. skeleton-based action recognition) has
made remarkable progress through learning discriminative features with effec-
tive networks [7,12,18,29,30,44,47]. However, these methods heavily rely on
the available manual annotations that are costly to acquire. Techniques requir-
ing less or no manual annotations are therefore developed, and among them a
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powerful approach is semi-supervised learning. It is aimed at leveraging unla-
beled data to enhance the model’s capability of learning and generalization
such that the requirement for labeled data can be alleviated. It has been widely
applied in the image domain [14–16,24,25,27,34]. Compared with these meth-
ods, [45] has recently proposed a more efficient way of feature learning from
unlabeled data, namely self-supervised semi-supervised learning (S4L), that cou-
ples self-supervision with a semi-supervised learning algorithm. It employs the
self-supervised technique to learn representations of unlabeled data to benefit
semi-supervised learning tasks. Self-supervised learning is very advantageous in
making full use of unlabeled data, which learns the representations of unlabeled
data via defining and solving various pretext tasks. Thus in this work we exploit
its application to semi-supervised 3D action recognition, which has little previous
investigation.

Fig. 1. Illustration of our main idea. We
design an effective SSL scheme to cap-
ture the discriminative motion represen-
tations of unlabeled skeleton sequences
for 3D action recognition. Since directly
applying SSL to semi-supervised learning
suffers from misalignment of representa-
tions learned from SSL and supervised
learning tasks, we further pioneer to align
their feature distributions via adversarial
learning

As images contain rich information
that is beneficial to feature extraction,
many effective SSL techniques [5,37,
42] are image-based. Comparatively, for
tasks over skeleton data which repre-
sent a person by 3D coordinate posi-
tions of key joints, it becomes very
challenging to leverage SSL techniques
to learn discriminative motion rep-
resentation. Therefore, how to learn
motion representation with SSL tech-
nique is an urgent problem for this task.
Recently, [48] proposes a SSL method
to learn temporal information of unla-
beled sequence via skeleton inpainting.
This SSL treats each sample as an indi-
vidual such that it ignores the shared
information among samples with the
same action class. As a result, semi-
supervised 3D action recognition has derived little benefit from the represen-
tations learned by skeleton inpainting.

Moreover, we also find that, directly applying SSL for semi-supervised learn-
ing suffers from misalignment of representations learned from self-supervised
and supervised learning tasks. As shown in Fig. 1, labeled and unlabeled sam-
ples are enforced with supervised and self-supervised optimization objectives
respectively. Though both sampled from the same data distribution, their fea-
ture distributions are misaligned. This misalignment would weaken the general-
ization of semi-supervised 3D action recognition models to unseen samples. A
task with similar problem as ours is unsupervised domain adaptation (UDA)
that matches the feature distributions from different domains. While their prob-
lem is quite similar to ours, there exist important differences between UDA and
our task. In UDA, the discrepancy of feature distributions is caused by different
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domains. Our problem is the misalignment of representations learned from SSL
and supervised learning tasks in semi-supervised 3D action recognition. One line
of research in UDA is adversarial-based adaptation methods [9,20,35] that have
shown promising results in domain adaptation. These methods seek to minimize
an approximate domain discrepancy distance through an adversarial objective
with respect to a domain discriminator. Hence, inspired by the alignment effect
of adversarial learning in UDA, we exploit its application to couple the self-
supervision method into a semi-supervised learning algorithm.

In this work, we propose an Adversarial Self-Supervised Learning (ASSL)
Network for semi-supervised 3D action recognition. As shown in Fig. 1, our model
leverages (i) self-supervised learning to capture discriminative motion represen-
tation of unlabeled skeleton sequences, and (ii) adversarial regularization that
allows to align feature distributions of labeled and unlabeled sequences. More
specifically, in addition to a self-inpainting constraint [48] for learning temporal
information of each individual unlabeled sample, we propose a new perspective of
consistency regularization within the neighborhood to explore the data relation-
ships. Neighborhoods can be considered as tiny sample-anchored clusters with
high compactness and class consistency. Consistency regularization within the
neighborhood further reveals the underlying class concept of the self-supervised
motion representation. Such discriminative motion representations significantly
improve the performance of semi-supervised 3D action recognition. Moreover,
considering that adversarial learning can minimize the discrepancy between two
distributions, we also propose a novel adversarial learning strategy to couple
the self-supervision method and a semi-supervised algorithm. The adversarial
regularization allows the model to align the feature distributions of labeled and
unlabeled data, which boosts the capability of generalization to unseen samples
for semi-supervised 3D action recognition.

We perform extensive studies for semi-supervised 3D action recognition on
two benchmark datasets: NTU RGB+D [28] and N-UCLA [39] datasets. With
the proposed ASSL network, we establish new state-of-the-art performances of
semi-supervised 3D action recognition. Summarily, our main contributions are
in three folds:

1. We present an Adversarial Self-Supervised Learning (ASSL) framework for
semi-supervised 3D action recognition, which tightly couples SSL and a semi-
supervised scheme via adversarial learning and neighbor relation exploration.

2. We offer a new self-supervised strategy, i.e., neighborhood consistency, for
semi-supervised 3D action recognition. By exploring data relationships within
the neighborhood, our model can learn discriminative motion representa-
tions that significantly improve the performance of semi-supervised 3D action
recognition.

3. We identify that directly applying SSL for semi-supervised learning suf-
fers from the representation misalignment of labeled and unlabeled samples.
A novel adversarial regularization is pioneered to couple SSL into a semi-
supervised algorithm to align their feature distributions, which further boosts
the capability of generalization.
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2 Related Work

2.1 3D Action Recognition

Human action recognition is one of important computer vision tasks. Due to
the informative representation for the action, skeleton-based action recognition
has been examined thoroughly in past literature. Previously, the traditional
approaches [11,36–38] try to design various hand-crafted features from skele-
ton sequences to represent human motion, e.g., relative 3D geometry between
all pairs of body parts [36]. Recently, deep learning has also been applied to this
task due to its wide success. To model temporal dependencies, many methods
leverage and extend the recurrent neural networks (RNNs) to capture the motion
features for skeleton-based action recognition, e.g., HBRNN [7] and VA-LSTM
[47]. Based on Convolutional Neural Networks (CNNs) that are powerful at learn-
ing hierarchical representations, spatio-temporal representations are extracted
for action recognition in [6,12,18,41]. For graph-structured data, graph-based
approaches [19,31,32] are popularly adopted for skeleton-based action recogni-
tion, e.g., ST-GCN [44] and AGC-LSTM [30]. Though successful, these super-
vised methods highly rely on massive data samples with annotated action labels,
which are expensive to obtain. Semi-supervised approaches are thus developed
to alleviate this data annotation limitation, and in this paper, we apply it to
learning motion representation for 3D action recognition.

2.2 Semi-supervised Learning

Semi-supervised learning algorithms learn from a data set that includes both
labeled and unlabeled data, usually mostly unlabeled. For a comprehensive
review of semi-supervised methods, we refer readers to [3]. Recently, there is
increasing interest in deep learning based semi-supervised algorithms. One group
of these methods is based on generative models, e.g., denoising autoencoders
[26], variational autoencoders [14] and generative adversarial networks [25,27].
Some semi-supervised methods add small perturbations to unlabeled data, and
require similar outputs between them by enforcing a consistency regularization,
e.g., Π-Model [15], Temporal Ensembling [15], Mean Teacher [34] and Virtual
Adversarial Training [24]. There are also some other works. To name a few, Lee
et al. [16] pick up the class with maximum predicted probability as pseudo-labels
for unlabeled data, and use them to train the models. [10] presents a conditional
entropy minimization for unlabeled data, which encourages their predicted prob-
ability to bias some class. The work most related to ours is [45] which proposes
a new technique for semi-supervised learning by leveraging SSL techniques to
learn representation of unlabeled images. Their work enlarges the generalization
of semi-supervised learning methods. In this work, we exploit effective SSL to
learn discriminative motion representation for semi-supervised 3D action recog-
nition. Moreover, we further propose a novel adversarial regularization to couple
SSL into the semi-supervised algorithm.
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2.3 Self-supervised Learning for Action Recognition

Self-supervised learning for action recognition aims to learn motion representa-
tions from the unlabeled data by solving the pretext tasks. Recently, a stream of
studies [1,8,17,23,33,43] design various temporal-related tasks to learn the tem-
poral pattern from the unlabeled RGB videos. For example, a sequence sorting
task is introduced in [17]. [21,40] propose to learn the video representation by
predicting motion flows. Note that, these methods are for learning representa-
tions from RGB videos and not applicable to long-term skeleton sequences. For
3D action recognition, Zheng et al. [48] propose a conditional skeleton inpaint-
ing architecture to learn the long-term dynamics from unlabeled skeleton data.
However, this SSL ignores the shared information among samples with the same
action class and therefore may yield less discriminative feature representations.
Hence, we propose an effective self-supervised strategy to learn discriminative
representation that is beneficial for semi-supervised 3D action recognition.

3 Method

3.1 Problem Formulation

Instead of relying on massive labels in existing methods, we use only a few
labeling data in semi-supervised 3D action recognition. Formally, let X be the
training set. The training samples xi ∈ X are skeleton sequences with T frames,
and xi = {xi,1, . . . ,xi,T }. At each time t, the xi,t is a set of 3D coordinates of
body joints, which can be obtained by the Microsoft Kinect and the advanced
human pose estimation algorithms [2,46]. In contrast to supervised 3D action
classification, training samples are split to two subsets in our task here: a labeled
training set denoted as XL = {x1, . . . ,xL} and an unlabeled training set denoted
as XU = {x1, . . . ,xU}. The training samples xl ∈ XL have annotated labels
{y1, . . . , yL} with yl ∈ C, where C = {1, . . . , C} is a discrete label set for C action
classes. The training samples xu ∈ XU are unlabeled. Usually, L is smaller than
U (L � U).

Inspired by S4L [45], we propose an Adversarial Self-Supervised Learning
framework to learn discriminative motion representations from XL and XU . It
couples self-supervised techniques into the semi-supervised scheme via adversar-
ial learning and neighbor relation exploration. Detailed descriptions of ASSL are
described in the following subsections.

3.2 Neighborhood Consistency for Semi-supervised 3D Action
Recognition

Semi-supervised 3D action recognition aims to learn discriminative motion rep-
resentation from massive unlabeled sequences. However, this is difficult over
succinct 3D human poses. To tackle this challenge, we propose an effective SSL
strategy, neighborhood consistency, that enhances the underlying class semantics
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Fig. 2. Framework of Adversarial Self-Supervised Learning (ASSL). The ASSL lever-
ages SSL and adversarial regularization for semi-supervised 3D action recognition. For
SSL techniques, in addition to a self-inpainting constraint [48] for learning temporal
information of each individual unlabeled sample, we propose to apply a new consis-
tency regularization within the neighborhood to explore data relations. The adversarial
training with a feature discriminator is used to align feature distributions of labeled
and unlabeled samples, which further boosts generalization of semi-supervised models
to unseen samples

of motion representation by exploring data relations within the neighborhoods,
so as to improve recognition performance.

As shown in Fig. 2, we first employ skeleton inpainting [48] to learn temporal
information for each unlabeled sequence. Specifically, an encoder network Enc
takes an input skeleton sequence xu from training set XU and produces a vector
as the temporal features hu ∈ R

d. Conditioned on the learned representation hu,
a decoder network Dec aims to fill the masked regions in the input sequence. Due
to the difference between the action classification (discrimination) and skeleton
inpainting (regression) tasks, we use a translation layer i.e., a linear layer, to
bridge the gap between the feature spaces of both tasks. The output of linear
layer is denoted as h̄u for the sample xu. Then, in this feature space, we employ
K-nearest neighbor [4] to select K nearest neighbors from unlabeled training
set XU . The neighbor set of xu is denoted as Ωxu

= {x1
u, . . . ,xK

u }. A message
aggregation module is proposed to produce the local center vector. We use a mul-
tilayer perceptron to assign a weight for each neighbor sample, which evaluates
their similarities as the anchor. The weights αk are computed as follows:

αk =
exp

(
MLP

(
|h̄u − h̄

k
u|

))

∑K
k=1 exp

(
MLP

(
|h̄u − h̄

k
u|

)) , (1)

where h̄k
u is the translated feature of neighbor sample xk

u ∈ Ωxu
, MLP (·) denotes

the multilayer perceptron in message aggregation module. According to the
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computed weights {α1, . . . , αK}, the local class center cu can be aggregated
with the neighbor set Ωxu

as follows:

cu =
K∑

k=1

αkh̄
k
u. (2)

Considering the high compactness and class consistency within neighbor-
hoods, we require that the samples within neighborhoods achieve a similar pre-
diction with the local center cu. However, for a sample xu, its neighbor samples
either share the class label (positive) with xu or not (negative). To minimize the
impact of negative neighbors, we introduce a simple selecting criterion: we get
the 1-nearest labeled neighbor from the labeled training set XL for the anchor
xu and the neighbor xk

u. If the labeled neighbors of the anchor xu and the neigh-
bor xk

u have the same label, xk
u is regarded as the positive neighbor. The set of

selected positive neighbor for sample xu is denoted as Ωp
xu

. Finally, the loss of
consistency regularization within neighborhood is defined as follows:

LKL =
∑

xu∈XU

⎛
⎝KL

(
fc(cu), fc(h̄u)

)
+

∑
xK
u ∈Ωp

xu

KL
(
fc(cu), fc(h̄

k
u)

)
⎞
⎠ , (3)

where fc(·) is the classifier that outputs the predictions, KL(·) denotes Kullback-
Leibler divergence.

Like consistency regularization for unlabeled samples xu ∈ XU , the neighbor
sets of labeled examples xl ∈ XL are also selected from the unlabeled set XU .
which are denoted as Ωxl

. Similarly, we use the feature h̄l of xl as the anchor
to estimate its local center representation cl with its neighbors set Ωxl

as the
Eq. (1)–(2) (shown in Fig. 2). Under the assumption that the anchor shares the
same class semantic with the local center, we use a cross-entropy loss CE(·) for
the center cl:

Lc
CE =

∑
xl∈XL

(CE (fc(cl), yl)) , (4)

where yl is the class label of xl.
Overall, the optimization objectives of unlabeled samples can be formulated

as follows:

LU = LKL + Lc
CE + Linp, (5)

where Linp denotes the skeleton inpainting loss that is the L2 distance between
the inpainted sequence and the original input sequence. Minimizing this opti-
mization objective LU encourages the model to enhance the underlying class
concept of the self-supervised motion representation and yield discriminative
feature representations.
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3.3 Adversarial Learning for Aligning Self-supervised and
Semi-supervised Representations

(a) Sup. (b) Sup. + Sel.

Fig. 3. The t-SNE visualization of
motion features learned by Sup. and Sup.
+ Sel.. (a) Sup. is trained with the super-
vised objective for the labeled samples.
(b) Sup. + Sel. is trained through opti-
mizing the supervised and SSL objec-
tives (Eq. (5)) for the labeled and unla-
beled samples, respectively. Different col-
ors indicate different classes. Best viewed
in color. The squares with black border
denote the labeled data, and others are
unlabeled data (Color figure online)

According to the training of exist-
ing semi-supervised learning meth-
ods, the labeled and unlabeled sam-
ples are enforced with supervised and
SSL objectives, respectively. In this
work, Eq. (5) is used for the unlabeled
samples. Although our proposed SSL
technique is quite effective for semi-
supervised 3D action recognition, we
identify that the representations learned
with supervised and SSL task are mis-
aligned. As shown in the Fig. 3, with
the benefit of SSL technique, the fea-
tures of Sup. + Sel. present a more com-
pact distribution than Sup.. However, in
contrast to the intra-class compactness
of labeled data (the squares with black
border), there are scattering distribu-
tions for the unlabeled data in Fig. 3(b).
Thus, although both sequences are sam-
pled from the same data distribution, their feature distributions are misaligned
due to different optimization objectives. To tackle this problem, we propose
a novel adversarial training strategy to couple SSL method with the semi-
supervised 3D action recognition. Specifically, a discriminator Dis is trained to
distinguish the unlabeled features from the labeled features. And the model is
trained simultaneously to confuse the discriminator Dis. Hence, the adversarial
loss is defined as follows:

Ladv =
1
L

∑
xl∈XL

(
log

(
Dis(h̄l)

))
+

1
U

∑
xu∈XU

(
log

(
1 − Dis(h̄u)

))
. (6)

The adversarial regularization allows the model to align the feature distri-
butions of labeled and unlabeled data. Therefore, like the labeled data, the fea-
ture distribution of unlabeled data becomes more intra-class compactness, which
boosts the capability of generalization to unseen samples. More analyses about
adversarial regularization are reported in Sect. 4.3.

3.4 Model Architecture and Optimization

Unlike the existing 3D action recognition method [7,12,18,29,30,44,47] learning
the discriminative features through the designed effective networks, the goal of
this work is to explore effective semi-supervised scheme for 3D action recogni-
tion. Therefore, this work adopts a universal architecture. In order to effectively
capture the motion dynamics, we use three bidirectional GRU layers to encode
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the input skeleton sequence in the Enc. The decoder consists of two unidirec-
tional GRU layers. We use 4 linear layers and 3 linear layers in the discriminator
and the multilayer perceptron of message aggregation, respectively. The classifier
is a two-layer perceptron.

During training, our ASSL network is learned by minimizing the following
loss on the training data:

L = LL + λ1LU + λ2Ladv. (7)

where LL is a cross-entropy loss of all labeled examples in XL, λ1 and λ2 are non-
negative scalar weights. Note that, we always sample the same number labeled
and unlabeled samples in mini-bathes.

4 Experiments

In this section, we evaluate and compare our work with previous semi-supervised
methods and also conduct detailed component analysis.

4.1 Experimental Setup

Datasets. Two popular benchmark datasets, NTU RGB+D dataset [28] and
Northwestern-UCLA dataset [39], are used for our experiments.

NTU RGB+D dataset [28] contains 56,880 samples covering 60 different
classes of human actions performed by 40 distinct subjects. These videos are
collected with three cameras simultaneously in different horizontal views. Two
evaluation protocols are provided: Cross-Subject (CS) and Cross-View (CV).
For CS protocol, skeleton sequences performed by 20 subjects are used for train-
ing, and the rest for testing. For CV protocol, all videos from Camera 2 and 3
are used for training while those from Camera 1 are used for testing. For semi-
supervised 3D action recognition, 5%, 10%, 20% and 40% of training sequences
of each class are labeled on the training set.

Northwestern-UCLA dataset [39] has 1,494 samples performed by 10 different
subjects belonging to 10 action classes. Each action sample is captured by three
Kinect cameras simultaneously from a variety of viewpoints. Its training set
consists of samples from the first two cameras and the rest from the third camera
form the testing set. For semi-supervised 3D action recognition, we use 5%, 15%,
30% and 40% labels of training sequences of each class on the training set.

Baselines. There is no available semi-supervised baseline for 3D action recog-
nition, so we use following methods as baselines that achieve state-of-the-art
performances in the RGB domain:

1) Supervised-only (Sup.), training with labeled skeleton sequences only.
2) Pseudo labels [16], leveraging the idea that the predicted labels of unlabeled

samples are used for training. First, train a model with the labeled data,
then predict the classes of unlabeled samples. These pseudo labels are used
to retrain the network in a supervised fashion with labeled and unlabeled
data simultaneously.
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3) Virtual Adversarial Training (VAT) [24], training with unlabeled data to make
the model robust around input data point against local perturbation. It gen-
erates small adversarial perturbations for unlabeled samples, which greatly
alter the output distribution; then consistency loss is applied over unlabeled
training data to encourage consistency of predictions for input data and its
adversarially perturbed version.

4) Conditional Entropy Minimization (EntMin) [10], minimizing the entropy of
prediction over unlabeled training data as a regularization for model training.
Predicted class probabilities are encouraged to be near a one-hot vector via
training with unlabeled data.

5) Self-Supervised Semi-Supervised Learning (S4L) [45], the most related
method to ours. It trains the model on self-supervised and semi-supervised
tasks in a multi-task fashion. For 3D action recognition, we use the skeleton
inpainting framework [48] as the pretext task for self-supervised learning.

Implementation. All comparisons with semi-supervised baselines are made
under the same setting to be fair. In all experiments, the dimension of hidden
states in the GRU and bidirectional GRU is set to 512. On both datasets, we
randomly sample T = 40 frames from each skeleton sequence as input during
training and testing. We train all networks by the ADAM optimizer [13]. The
learning rate, initiated with 0.0005, is reduced by multiplying it by 0.5 every
30 epochs. We set λ1 = 1 and λ2 = 0.1 in Eq. (7). Our experiments are all
implemented with PyTorch and 1 Titan Xp GPU.

4.2 Comparison with Semi-supervised Methods

We evaluate our method by comparing it with baselines for semi-supervised 3D
action recognition and show results on NTU and N-UCLA datasets respectively
in Tables 1 and 2.

Table 1. Test accuracy (%) on NTU dataset (Cross-Subject (CS) and Cross-View
protocols (CV)) with 5%, 10%, 20 and 40% labels of training set. v./c. denotes the
number of labeled videos per class

Method 5% 10% 20% 40%

CS (33 v./c. ) CV (31 v./c.) CS (66 v./c.) CV (62 v./c.) CS (132 v./c.) CV (124 v./c.) CS (264 v./c.) CV (248 v./c.)

Supervised-only 47.2 53.7 57.2 63.1 62.4 70.4 68.0 76.8

Pseudolabels [16] 50.9 56.3 58.4 65.8 63.9 71.2 69.5 77.7

VAT [24] 51.3 57.9 60.3 66.3 65.6 72.6 70.4 78.6

VAT + EntMin [10] 51.7 58.3 61.4 67.5 65.9 73.3 70.8 78.9

S4L (Inpainting) [45] 48.4 55.1 58.1 63.6 63.1 71.1 68.2 76.9

ASSL (ours) 57.3 63.6 64.3 69.8 68.0 74.7 72.3 80.0

As seen from tables, with the proposed ASSL network, we establish new
state-of-the-art performances of semi-supervised 3D action recognition. To be
specific, S4L (Inpainting) performs worse than Pseudolabels, VAT and VAT +
EntMin, suggesting it is inefficient to learn discriminative representation via
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Table 2. Test accuracy (%) on N-UCLA dataset with 5%, 15%, 30% and 40% labels
of training set. v./c. denotes the number of labeled videos per class

Method 5% (5 v./c.) 15% (15 v./c.) 30% (30 v./c.) 40% (40 v./c.)

Supervised-only 34.1 37.9 48.9 58.8

Pseudolabels [16] 35.6 48.9 60.6 65.7

VAT [24] 44.8 63.8 73.7 73.9

VAT + EntMin [10] 46.8 66.2 75.4 75.6

S4L (Inpainting) [45] 35.3 46.6 54.5 60.6

ASSL (ours) 52.6 74.8 78.0 78.4

skeleton inpainting and thus semi-supervised 3D action recognition has derived
little benefit from self-supervised representations. S4L (Inpainting), though a
advanced semi-supervised approach, requires an effective self-supervised repre-
sentations that are difficult to learn in this task. Compared with these semi-
supervised methods, our benefit is larger when the number of labels is reduced.
For example, with 5% labels of training set on NTU dataset, the results of our
ASSL present greater improvement compared with VAT + EntMin. This clearly
demonstrates the power of the proposed ASSL.

4.3 Ablation Study

We then investigate effectiveness of the neighborhood consistency and adversarial
training in our proposed ASSL on NTU and N-UCLA datasets. We also analyze
effects of different neighborhood sizes and Neighborhood quality.

Neighborhood Consistency. We evaluate the effects of the proposed self-
supervised strategy, neighborhood consistency, upon the discriminativeness of
motion representations that is shown in final performance of semi-supervised 3D
action recognition. In Table 3, the model Sup. + Inp. is trained with a cross-
entropy loss for labeled data and a self-inpainting loss Linp for unlabeled data.
Instead of self-inpainting loss, Sup. + Nei. explores the data relations within
neighborhoods by enforcing the consistency regularization (Eq. (3), (4)) for unla-
beled data. We can see that Sup. + Nei. significantly outperforms the Sup.
+ Inp.. The comparison results justify that our neighborhood consistency can
learn more discriminative motion representations that are more beneficial for
semi-supervised 3D action recognition.

Moreover, the self-inpainting constraint [48] aims at learning temporal infor-
mation of each individual unlabeled sequence. The goal of our neighborhood
consistency regularization is to explore inter-sample relations within neighbor-
hoods. We jointly learn the two features in Sup. + Inp. + Nei.. It can be seen
compared with Sup. + Inp. and Sup. + Nei., Sup. + Inp. + Nei. achieves better
performance on both datasets for semi-supervised 3D action recognition. This
illustrates that the representations learned by our neighborhood consistency are
complementary to those learned with self-inpainting. Therefore, the benefits of
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Table 3. Ablation study on self-supervised learning methods, skeleton inpainting (Inp.)
[48] and neighbor consistency (Nei.). Classification accuracy (%) is reported on NTU
with 5% labels and N-UCLA with 15% labels.

Methods NTU 5% N-UCLA 15%

CS (33 v./c.) CV (31 v./c.) (15 v./c.)

Supervised-only (Sup.) 47.2 53.7 37.9

Sup. + Inp 48.4 55.1 46.6

Sup. + Nei 52.1 57.8 60.0

Sup. + Inp. + Nei 55.2 61.1 66.4

ASSL 57.3 63.6 74.8

combining these two SSL techniques to capture discriminative representation
from unlabeled sequences in our final model are verified (seen Eq. (5)).

Neighborhood Size. We assume that the larger neighborhood size imposes
stronger regularization and gives better performance. In order to justify this
hypothesis, we investigate the effects of different neighborhood sizes in Fig. 4.
As neighborhood size increases, the performance is improved and then becomes
saturated. This implies that more discriminative representations can be learned
with a larger size. But, if using too large a size, the model will cover distant data
points that have weak semantic consistency within the neighborhood, and hence
the performance becomes saturated.

Neighborhood Quality. We further examine effects of the class consistency
of anchor Neighborhood, i.e., Neighborhood quality. In Fig. 5, we report the
progress of the ratio of neighbor samples sharing the same action label as the
anchor throughout training. We can observe the ratio of class consistent neigh-
borhoods increases, and then becomes saturated. This indicates exploring data
relations is helpful to inferring underlying class semantics, thus facilitating the
clustering of samples with the same action labels.

Fig. 4. Classification accuracy (%) with
different neighborhood size on NTU
dataset with 5% labels

Fig. 5. The ratio of neighbor samples
sharing the same action label as the
anchor throughout training on N-UCLA
dataset
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Table 4. Ablation study on adversarial training. Classification accuracy (%) is reported
on NTU with 5% labels and N-UCLA with 15% labels.

Methods NTU 5% N-UCLA 15%

CS (33 v./c.) CV (31 v./c.) (15 v./c.)

Sup. + Inp. w/o adv 48.4 55.1 46.6

w/ adv 51.2 57.1 52.4

Sup. + Nei. w/o adv 52.1 57.8 60.0

w/ adv 53.4 59.1 68.5

ASSL w/o adv 55.2 61.1 66.4

(Sup. + Inp. + Nei.) w/ adv 57.3 63.6 74.8

Adversarial Training. The adversarial alignment is proposed to mitigate the
gap between representations learned from supervised and self-supervised tasks.
To evaluate effectiveness of adversarial training for coupling self-supervision
methods with the semi-supervised 3D action recognition, we train several self-
supervised models with or without adversarial regularization. The results are
reported in Table 4. It is obvious that all models with adversarial regulariza-
tion achieve better performances than those without. For example, on N-UCLA
dataset, the result of ASSL w/adv is 74.8%, outperforming ASSL w/o adv by
8.4%. The improved performance in Table 4 demonstrates that it is an effective
strategy to couple self-supervision with semi-supervised algorithms by adversar-
ial training.

(a) CS-Sup. (b) CS-ASSL w/o adv (c) CS-ASSLw/ adv

(d) CV-Sup. (e) CV-ASSL w/o adv (f) CV-ASSL w/ adv

Fig. 6. The t-SNE visualization of motion features learned by Supervised Baseline
(Sup.), ASSL w/o adv and ASSL w/adv (ours) on NTU dataset. Different colors indi-
cate different classes. Best viewed in color. The squares with black border denote the
labeled data, and others are unlabeled data (Color figure online)
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To further explore this scheme, we visualize the feature distributions of Sup.,
ASSL w/o adv and ASSL w/adv by using t-SNE [22] in Fig. 6. For the model Sup.
trained with only supervised objective on labeled data, the decision boundaries
of its feature distributions are very ambiguous. The model ASSL w/o adv is
trained with supervised and self-supervised objectives for labeled and unlabeled
data, respectively. Compared with Sup., the features of ASSL w/o adv present
tighter distributions, which benefit from self-supervised learning. But, long-tail
distributions still exist for unlabeled samples (circles). Figure 6(c) and (f) show
clearly the alignment between feature distributions of labeled and unlabeled
data for ASSL w/adv, i.e., the proposed ASSL. Overall, the comparison results
prove the effectiveness of adversarial training for coupling self-supervision with
semi-supervised action recognition. And this drives our model to learn more
discriminative features that have desired intra-class compactness and inter-class
separability.

5 Conclusions

In this paper, we consider the semi-supervised learning scheme for 3D action
recognition task. The proposed ASSL effectively couples SSL into semi-
supervised algorithm via neighbor relation exploration and adversarial learning.
Exploring data relations with neighborhood consistency regularization encour-
ages the model to learn discriminative motion representations that significantly
improve the performance of this task. Moreover, we introduce a novel adversar-
ial regularization to couple SSL method into a semi-supervised algorithm. This
allows the model to align the feature distributions of labeled and unlabeled sam-
ples and boosts the capability of generalization to unseen samples. Our exper-
iments verify that the proposed neighbor relation exploration and adversarial
learning are strongly beneficial for semi-supervised 3D action recognition. With
the proposed ASSL network, we establish news state-of-the-art performances of
semi-supervised 3D action recognition.
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