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ABSTRACT

Translating videos into natural language sentences has drawn
much attention recently. The framework of combining visual
attention with Long Short-Term Memory (LSTM) based text
decoder has achieved much progress. However, the vision-
language translation still remains unsolved due to the se-
mantic gap and misalignment between video content and
described semantic concept. In this paper, we propose a
Hierarchical Memory Model (HMM) – a novel deep video
captioning architecture which unifies a textual memory, a
visual memory and an attribute memory in a hierarchical
way. These memories can guide attention for efficient video
representation extraction and semantic attribute selection in
addition to modelling the long-term dependency for video
sequence and sentences, respectively. Compared with tradi-
tional vision-based text decoder, the proposed attribute-based
text decoder can largely reduce the semantic discrepancy be-
tween video and sentence. To prove the effectiveness of the
proposed model, we perform extensive experiments on two
public benchmark datasets: MSVD and MSR-VTT. Experi-
ments show that our model not only can discover appropriate
video representation and semantic attributes but also can
achieve comparable or superior performances than state-of-
the-art methods on these datasets.
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1 INTRODUCTION

Automatically generating captions for videos is a challenging
and important problem in computer vision. Along with the
emergence of large-scale videos on the Internet, broadcasting
channels, and other personal devices, video captioning can
be applied to a wide range of applications, e.g., aiding visu-
ally impaired users, robotic vision, and incident report for
surveillance.

Recently, deep encoder-decoder models which contain an
attention-based video encoder and a LSTM-based text de-
coder have achieved encouraging performance in video cap-
tioning [1, 14, 39, 42]. However, the semantic gap and mis-
alignment between video content and described semantic
concept are still the fundamental problems in video caption-
ing. Recently, selective attribute based methods [41] have
been proposed to solve these problems and achieved much
better results. They generally focus on the semantic attribute
attention based on previous words, which overlook the effects
of the long-term textual and visual contents. As we know,
neural memory models, e.g., neural turing machines [10] and
memory networks [23], have been successfully applied to
long-term sequence modelling, e.g., visual question answering
[35]. It is natural to apply memory networks to model the
long-term textual and visual contents which helps to select
semantic attributes in video captioning.

In this paper, we propose a hierarchical memory model to
describe videos in Figure 1 (a), which consists of a textual
memory, a visual memory and an attribute memory. The
attribute memory is built on the textual memory and visual
memory in a hierarchical way. The textual memory and visual
memory guide attention for semantic attribute selection in
addition to modelling the long-term dependency for video
sequences and sentences. Considering that attributes play a
very important role in the sentence generation, we also pro-
pose an improved video attribute detection method. Figure 1
(b) shows an example of detected attributes and generated
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Detected attributes:
pan, woman, cooking, pot,

preparing, frying, person,
something, mixture, bowl

Generated Sentence:

Our model: a woman is cooking 
some sort of food in a pan

Ground truth: a lady is cooking food

(a) (b)

Figure 1: (a) The illustration of our hierarchical
memory model. It consists of a textual memory, a
visual memory and an attribute memory. The at-
tribute memory is built on the textual memory and
visual memory. The textual memory and visual mem-
ory guide attention for semantic attribute selection.
We also propose an improved video attribute detec-
tion method. (b) An example of detected attributes
and generated sentence for a video.

sentence for a video. It can be seen that the detected at-
tributes help our model generate a sentence containing more
details.

Inspired by Neural Turing Machine (NTM) [10] and Memo-
ry Networks [23], we utilize three external memories in terms
of textual memory, visual memory, and attribute memory
to store the hidden representations of LSTM-based text de-
coder, the attended video representations, and the semantic
attributes, respectively. Take an input video for example, we
first extract its frame/clip representations with pretrained
2D/3D deep networks (e.g., VGG), and extract video at-
tributes by an improved attribute detector. Then the pro-
posed hierarchical memory model performs as follows: 1) the
LSTM-based text decoder writes its hidden states into the
textual memory (TM) after predicting the next word, 2) the
visual attention model exploits textual information read from
the updated TM to select local video representations, which
will be written into the visual memory (VM), 3) combine the
contents read from VM and TM to select relevant semantic
attributes from an attribute memory (AM), 4) the select-
ed attributes are fed into the LSTM-based text decoder to
generate words.

The main contributions of this paper are summarized as
follows:

• We are the first to propose a hierarchical memory model
for video captioning, which contains not only a textual
memory and a visual memory, but also an attribute
memory for incorporating semantic attributes.

• We propose an improved video attribute detection
framework, which overcomes the learning difficulty of
previous multiple instance learning methods.

2 RELATED WORK

Video Captioning Most methods in this direction can be
divided into two categories: language template based methods
[11, 20, 25] and neural network based methods [14, 29, 30, 32,
38, 39, 42]. The language template based methods first detect
key semantic words from visual content, and then relate them
to produce the sentence with predefined language template
(e.g., a syntactically well-formed tree). Accordingly, this kind
of methods usually generate grammatically correct sentences,
but undermine the novelty and flexibility of the sentence.
The neural network based methods inspired by the success
of Neural Machine Translation consider video captioning
as a result of translating videos to sentences. Venugopalan
et al. [30] extend the image captioning methods by simply
applying the mean pooling to the representations of all frames.
However, this method obviously breaks the spatiotemporal
structure information of a video, and has many limitations in
describing videos with great temporal dynamics. To deal with
the issue, some researchers [7, 29, 36] use recurrent neural
networks (RNNs) to model temporal dependencies in videos.
Yao et al. [39] propose a temporal attention mechanism to
exploit global temporal structure in videos. Some others
[1, 14] present a more sophisticated recurrent encoder to
exploit spatiotemporal information of videos. The proposed
method in this paper belongs to the second category.

Memory Modelling Vanilla recurrent neural network-
s (RNN) whose recurrent hidden states can be viewed as an
implicit memory has difficulty in modelling long-range tempo-
ral dependencies [3]. Long short-term memory (LSTM) and
gated recurrent units (GRU) have been proposed to improve
RNN. However, all these models are still limited in modelling
long-range temporal dependencies. To deal with it, several
works on memory modelling have been proposed, which has
proceeded along two different directions: neural turing ma-
chine and memory networks. Neural Turing Machine (NTM)
proposed by Graves et al. [10] holds an external memory
to interact with the internal state of neural networks via
selective read and write operations, and it has shown great
potential in storing and modifying the internal state of the
network over long time periods. Different form NTM, memo-
ry networks [33] adopt static external memory which makes
it easy to learn in real tasks. Several variants of memory
networks have been successfully applied to textual question
answering [43] and visual question answering [35]. In this
work, we devise three external memories to store different
modal information in a hierarchical way, which improve the
performance of video captioning.

Semantic Attributes in Sequence Learning Fol-
lowing the fact that semantic attributes detected from visual
content have been widely used in visual recognition [18],
several recent works have applied semantic attributes into
sequence learning for image/video captioning. Fang et al. [9]
first use multiple instance learning to train visual detectors
for semantic attributes (e.g., nouns, verbs, and adjectives),
then use a maximum-entropy language model to generate
sentences based on the outputs of visual detectors, finally
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re-rank sentence candidates via a deep multimodal similar-
ity model. Along with this recipe, Tran et al. [27] design
a larger entity recognition model which detects celebrities
and landmarks to improve the caption, You et al. [41] learn
to selectively attend semantic attributes via parametric and
non-parametric attribute prediction models. Later Wu et
al. [34] incorporate high-level concepts into the successful
CNN-RNN model which can improve the performance of
vision-to-language problems. At the same time, [16, 40] al-
so demonstrate the conclusion by injecting attributes into
the encoder-decoder model in image/video captioning via
different ways. In this paper, we propose an improved video
attribute detector which overcomes the learning difficulty of
previous multiple instance learning methods.

3 MAIN METHOD

In this section, we will first describe the overall framework of
the proposed HMM, and then introduce four key components:
video attribute detection, LSTM with semantic attributes,
memory-augmented attention, and hierarchical memories.
Finally, we explain the details of model learning.

3.1 Overall Framework

The overall framework of the proposed HMM is illustrated in
Figure 2. For a given video V , we sample Nv equally-spaced
frames from the video, and employ pretrained 2D/3D Con-
volutional Neural Networks (CNNs) to extract frame/clip
features {v1, v2, v3, . . . , vn}, where n is the number of sam-
pled frames/clips. After the video representation learning, the
framework can be divided into four key parts. (1) Video at-
tribute detection. We pretrain a video attribute detection
model to obtain the attributes {ai, i = 1, 2, · · · ,K} that oc-
cur in the video. These attributes are stored in the attribute
memory (AM). (2) LSTM with semantic attributes. At
each time t, the LSTM based text decoder takes the input
word yt, previous hidden state ht−1, and the attributes read
from AM as input, and output current hidden states. (3)
Memory-augmented attention. The memory-augmented
attention (e.g., Attendt) is designed to adaptively select rele-
vant visual contents or video attributes based on the current
memory status (TM t or VM t). (4) Hierarchical memo-
ries. When the hidden state ht of LSTM evolves over time,
it will be first written into the textual memory TM t, which
updates textual memory to TM t+1. Then the updated textu-
al memory contents will be read out to guide attention model
to select relevant visual information Attendt+1, which will
be written into the visual memory VM t+1. Combining the
updated textual memory TM t+1 and visual memory VM t+1,
video attributes can be selected from the attribute memory
via an adaptive gate. Finally, the selected attributes will be
injected into the LSTM-based text decoder to predict the
next word.

3.2 Video Attribute Detection

To detect video attributes, a common way is to train a
multiple instance learning [9] model on the video frames.
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Figure 2: The overall framework of the proposed hi-
erarchical memory model for video captioning. It
contains three memories: textural memory (TM),
visual memory (VM) and attribute memory (AM).
Particularly, the AM stores video attributes by our
improved attribute detector. The gate unit controls
how to use visual information and textual informa-
tion to select attributes.

However, this method will lead to the semantics noise [16]
due to simply assigning video description to each sampled
frame during the process of model training. To address this
problem, Pan et al. [16] propose an improved video MIL
model. For each attribute wa ∈ A, all the spatial regions
of the sampled Nv frames in a video are regarded as a bag.
The bag is considered as positive if wa is in the video V ’s
descriptions and negative otherwise. When using a noisy-OR
version of MIL [31], the probability of bag bV containing
attribute wa is measured on the probabilities of all instances
in this bag, which can be calculated as:

Pwa
V = 1−

∏
j∈{1,Nv}

∏

i∈bj
V

(
1− pwa

ij

)
(1)

where pwa
ij denotes the probability of the attribute wa that

the i-th region in the j-th frame predicts and bjV denotes
all sub-regions corresponding to the j-th frame in the video
V . Actually, the number of multiplication of

(
1− pwa

ij

)
is

usually very large and exceeds the lower limit of floating
point arithmetic precision. To avoid this problem, we propose
an improved schemes as illustrated in Figure 3. The proposed
scheme in Figure 3 takes the sampled Nv frames as input, and
orderly forwards the input through FCN layers, a sigmoid
layer, an image MIL layer and a max layer. The FCN architec-
ture is a fully convolutional neural network transformed from
the VGG-16 [22]. The image MIL layer performs multiple
instance learning on the output response map produced by
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the FCN layer. The procedure can be formulated as:

Pwa
j = 1−

∏

i∈bj
V

(1− pwa
i ) (2)

where pwa
i is the probability generated by the i-th region of

the response map, bjV denotes the j-th frame in the video
V , and Pwa

j denotes the probability of j-th frame containing
attribute wa. After that, the max layer computes the final
probability by taking the maximum value along the frame
sampling dimension. Similar to previous MIL model [9], a
cross entropy loss is employed during the process of model
training.

FCN Sigmoid MIL

MAX

man
horse

snow

FCN Sigmoid MIL

FCN Sigmoid MIL

FCN Sigmoid MIL

Figure 3: The proposed video attribute detection ar-
chitecture for the video frames. In particular, FCN
denotes a Fully Connected Neural Network trans-
formed from VGG Net.

3.3 LSTM with Semantic Attributes

Different from the widely used unimodal LSTM [44], we take
the attended semantic attributes as another input. Here the
attributes at are read from our attribute memory during
caption generation. For each word in the sentence, we denote
it as a vector yt via one-hot encoding, and then transform
it to an embedding vector Et. The whole procedure can be
formulated as follows:

it = σ (WiEt + Uiht−1 +Miat + bi) (3)

ft = σ (WfEt + Ufht−1 +Mfat + bf ) (4)

ot = σ (WoEt + Uoht−1 +Moat + bo) (5)

c̃t = φ (WcEt + Ucht−1 +Mcat + bc) (6)

ct = it � c̃t + ft � ct−1 (7)

ht = ot � φ (ct) (8)

where the default operation between matrices is matrix mul-
tiplication, � is an element-wise multiplication, W , U , M ,
and b are the parameters to be learned, σ is the element-
wise logistic sigmoid function, and φ is hyperbolic tangent
function tanh.

For clear illustration, we abbreviate the above process as:

ht = ψ (ht−1, ct−1, yt, at) (9)

3.4 Memory-augmented Attention

Given the visual features V = {v1, v2, . . . , vn}, and the rttm
read from the textual memory at time t, we feed them through
a fully-connected network followed by a softmax function to
compute the attended weight αi

t:

αi
t = softmax(wT

h tanh
(
Wrr

t
tm + Uαvi + bα

)
) (10)

where wT
h , Wr, Uα, and bα denote the parameters to be

learned. With the attention distribution αi
t, the attended

visual representation at time t can be computed as:

ct =

n∑
i=1

αi
tvi (11)

where ct will be written into the visual memory as presented
below. To simplify description, the above attention model
can be abbreviated as follows:

ct = β(V, rttm) (12)

The attention model for selecting semantic attributes is simi-
lar to β, except that the inputs are different.

3.5 Hierarchical Memories

The proposed hierarchical memory model (HMM) consists
of three external memories: textual memory (TM), visual
memory (VM) and attribute memory (AM). TM and VM are
implemented as a matrix M ∈ RN×D, respectively, where N
denotes the number of memory locations and D denotes the
vector size of each location. AM is a similar matrix except
that each row stores the embedding representation of an
attribute. Since the semantic attributes are very high-level
representations for the video captioning, we keep the AM
static during sentence generation. During the interaction be-
tween controller (e.g., the LSTM and the visual attention
model) and memory, we employ the similar read/write oper-
ation and content-based addressing mechanism detailed in
[10]. To facilitate the following descriptions, the read/write
operation can be defined as:

rt = fread (wt,Mt) (13)

Mt = fwrite (ut, et, at,Mt−1) (14)

Writing hidden representations to textual memory
After predicting the next word, the controller (the LSTM-
based text decoder) will write the hidden representations
into the textual memory TM t to store textual information.
The address vector utm

t , the erase vector etmt and the add
vector atm

t are emitted by the write head of the controller,
respectively. The textual memory is updated by:

TM t = fwrite

(
utm
t , etmt , atm

t , TM t−1) (15)

Reading from the updated textual memory The ad-
dress vector wtm

t is emitted by the read head of the controller
(the attention model). Once the textual memory is updated,
the read vector returned by the controller is computed by:

rtmt = fread
(
wtm

t , TM t) (16)

Attention selection for video representations After
the read vector rtmt is gained from the textual memory, the
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attended visual information at current time for the video
representations V = {v1, v2, v3, . . . , vn} can be obtained by:

ct = β(V, rtmt ) (17)

Writing attended visual information to visual mem-
ory After obtaining the attended visual information, the
controller (the attention model) will write the visual infor-
mation into the visual memory VM t. Similarly, the address
vector uvm

t , the erase vector evmt and the add vector avm
t are

emitted by the write head of the controller, respectively. The
visual memory is updated by:

VM t = fwrite

(
uvm
t , evmt , avm

t , V M t−1) (18)

Reading from the updated visual memory The wvm
t

is emitted by the read head of the controller (the attention
model). Once the visual memory is updated, the read vector
from the visual memory is written as:

rvmt = fread
(
wvm

t , V M t) (19)

Gated semantic attention for attribute memory S-
ince the generation of next word relies on either visual clues
or textual clues [13], we devise a novel gate to decide the
optimal proportion between visual clues and textual clues.
Based on the hidden representation of the LSTM-based text
decoder and the external textual memory status, the adjusted
gate st is defined as:

st = σ
(
Wsr

tm
t + Usht−1 + bs

)
(20)

where Ws, Us, and bs denote the parameters to be learned,
and σ denotes the sigmoid activation function. Given the
adjusted gate st, the visual clues rvmt , the textual clues rtmt
and the semantic attributes A = {a1, a2, a3, . . . , aK}, the
attended attributes are obtained by:

at = β(g (A) , g
(
str

tm
t + (1− st) r

vm
t

)
) (21)

where g denotes the activation function Relu and β denotes
the proposed memory-augmented attention model.
Computing hidden representations of LSTM Af-
ter relevant attributes are read from the attribute memory,
the hidden representations of LSTM-based text decoder are
updated by:

ht = ψ (ht−1, ct−1, yt−1, at) (22)

The updated hidden representation ht will be used for pre-
dicting next word.

3.6 Model Learning

During the training phase, the model can be learned by
minimizing the following objective function on training video-
description pairs

{(
xi, yi

) |i = 1, 2, · · · ,M}
:

L (θ) = − 1

M

M∑
i=1

Ti∑
j=1

log ρ
(
yij |yi

1:j−1, x
i, θ

)
+ λ ‖θ‖22 (23)

where xi denotes the input video, yi denotes the correspond-
ing sentence whose length is Ti, θ denotes all the parameters
to be learned, and λ denotes the regularization term coeffi-
cient. We use a stochastic gradient descent algorithm with an
adaptive learning rate to learn the above model parameters.

The probability distribution over the whole vocabulary at
time t can be formulated as:

zt = tanh (Wvvt +Whht + bh) (24)

ρt = softmax (Uρzt + bρ) (25)

where Wv, Wh, bh, Uρ, and bρ denote the parameters to be
learned. Once the probability distribution ρt is determined,
each word yt can be sampled from the vocabulary until the
emergence of the end tag of sentence.

4 EXPERIMENTS

We perform experiments on two public datasets: MSVD
[4] and MSR-VTT [37] to demonstrate the effectiveness of
the proposed model. We will first describe the experiment
datasets and settings, and then make comparisons with the
state-of-the-art methods.

4.1 Datasets

MSVD This dataset is composed of 1970 short videos col-
lected from YouTube. Each video is annotated with about 40
English sentences, and the total number of video-description
pairs in the dataset is 80839. In our experiment, we adopt
the standard split used in [39], where 1200 videos, 100 videos,
and 670 videos are used for training, validation, and testing,
respectively.
MSR-VTT This dataset is a recent collection of large-
scale video description dataset with the largest number of
clip-sentence pairs and word vocabulary. It consists of 10000
short videos, and each video clip is equipped with about 20
English sentences. Following the default split in [37], where
6513 videos, 497 videos, and 2990 videos are used for training,
validation, and testing, respectively.

4.2 Experimental Settings

In our experiments, we uniformly sample 30 frames and
40 frames from each video in the MSVD and MSR-VTT
datasets, respectively. For video representations, we extract
the output of the pool3 layer from Inception-V3 [24], the
last fully connected layer from VGG19 [22] and the fc6 layer
from C3D [26] for frame and clip representation, respectively,
and concatenate them along the last dimension of features to
form the final video representation. For semantic attribute
detection in the video, we first choose 1,000 most common
words on each dataset as the candidate semantic attributes.
Then, we train the proposed video attribute detector on each
training data, and obtain a 1,000-way vector of probabilities
corresponding to the 1,000 attributes. Finally, we sort the
attribute probabilities and select the top 20 attributes as the
final attributes. For text representation of each sentence, we
apply the common lowercasing and rare word elimination to
all the descriptions and use one-hot encoding to represent
each word. For the training model, the hidden size of a single
layer LSTM is 512, the word embedding dimension is 468,
the sizes of both textual memory and visual memory are
(128,512), the batch size is 64, and the beam size is 5. To
address variable-length sentences, a start tag and a end tag
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Method BLEU@4 METEOR CIDEr-D

FGM [25] 13.68% 23.90% -
LSTM [30] 33.29% 29.07% -
SA [39] 41.92% 29.60% 51.67 %
S2VT [29] - 29.8% -
LSTM-E [15] 45.3% 31.0% -
p-RNN [42] 49.9% 32.6% 65.8 %
HRNE [14] 43.8% 33.1% -
BGRCN [1] 48.42% 31.70% 65.38
HBA [2] 42.5% 32.4% 63.5
RMA [12] 45.7% 31.9% 57.3
TSA [16] 52.8% 33.5% 74.0

HMM-c3d 46.0% 31.8% 63.2%
HMM-vgg 48.7% 32.4% 67.6%
HMM-inv3 49.9% 33.0% 70.7%
HMM-c3d-vgg 50.8% 33.1% 72.2%
HMM-c3d-inv3 52.9% 33.8% 74.5%

Table 1: The evaluation performance on BLEU@4,
METEOR and CIDEr-D metrics compared with the
other eight state-of-the-art methods on MSVD.

are added to sentence. To avoid the interruption of redundant
sentences, the sentences with length larger than 30 in the
dataset are removed from the datasets. To prevent gradient
explosion, we clip the gradients to the range of (−10, 10).
We adopt the Adadelta optimizer with a learning rate of
1e-4 in the training stage. To compare with the state-of-the-
art methods fairly, we employ the three common evaluation
metrics, i.e., BLEU@4 [17], METEOR [6] and CIDEr-D [28],
and use the codes published by Microsoft COCO Evaluation
Server [5] to compute all evaluation metrics.

4.3 Quantitative Analysis

4.3.1 Performance on MSVD. We compare our model on
MSVD with several state-of-the-art models: FGM [25], L-
STM [30], SA [39], S2VT [29], LSTM-E [15], p-RNN [42],
HRNE [14], BGRCN [1], HBA [2], RMA [12] and TSA [16].
To make a fair comparison with these methods, we report
the results on all the individual feature: Inception-V3, VG-
G, C3D and the combination of them. Table 1 shows the
evaluation results of different models on MSVD in terms of
BLEU@4, METEOR, and CIDEr-D. To be noted, most of the
state-of-the-art results are produced in the combination of
VGG and C3D. We can see that our proposed HMM achieves
comparable or better performance than the state-of-the-art
methods in almost all metrics. Specifically, our HMM per-
forms better than SA by 52.9−41.92

41.92
= 26.2% in the BLEU@4

score, by 33.8−29.6
29.6

= 14.2% in the METEOR score, and by
74.5−51.67

51.67
= 44.2% in the CIDEr-D score, respectively. Com-

pared with p-RNN [42], our proposed HMM also outperforms
it by 72.2−65.8

65.8
= 9.7% in the CIDEr-D score when using the

same feature (VGG+C3D). Since SA [39], p-RNN [42], BGR-
CN [1], and HRNE [14] are representative attention-based

Method BLEU@4 METEOR CIDEr-D

EMLR [8] 38.7% 26.9% 45.9
MVD [19] 38.3% 27.0% 41.8
Aalto [21] 39.8% 26.9% 45.7
MP-vgg [30] 34.8% 24.8% -
SA-vgg [39] 35.6% 25.4% -
SA-c3d [39] 36.1% 25.7% -
SA-c3d-vgg [39] 36.6% 25.9% -
SA-inv3 [39] 36.3% 23.6% 37.7%
SA-c3d-inv3 [39] 38.1% 25.9% 38.0%

HMM-c3d 37.4% 26.2% 40.5%
HMM-vgg 36.8% 26.0% 38.6%
HMM-inv3 37.2% 26.5% 39.4%
HMM-c3d-inv3 39.9% 28.3% 40.9%

Table 2: The evaluation performance on BLEU@4,
METEOR and CIDEr-D metrics compared with re-
cent state-of-the-art methods on MSR-VTT.

methods, which devise some complicated video encoders to
get better representations, the comparison with these meth-
ods indicates exploring more effective attention and memory
mechanisms are very important in video captioning. Even
compared with RMA [12] using a different key-value memory
network, our proposed HMM performs much better than it
by a large margin in all evaluation metrics. Furthermore, our
proposed HMM can achieve comparable performance than
the best competitor TSA [16] while TSA [16] employs the
best-performing architecture (factored, two-layer LSTM) in
[7]. These results further demonstrate the effectiveness of our
HMM in describing natural videos.

4.3.2 Performance on MSR-VTT. The performance compar-
isons to recent state-of-the-art methods on MSR-VTT are
shown in Table 2. MSR-VTT is a newly released large-scale
video benchmark [37], which is very challenging for video
captioning due to the largest number of video-sentence pairs.
In this experiment, we cite recent state-of-the-art results re-
ported on the MSR-VTT dataset, e.g., EMLR, MVD, Aalto,
MP-vgg, SA-vgg, SA-c3d and SA-c3d-vgg, and reimplement
SA-inv3 and SA-c3d-inv3. All the results of these models in
Table 2 are conducted on the individual feature: Inception-
V3, VGG, C3D and the combination of them. From these
results, we can see that the proposed HMM-inv3 performs
better than the baseline method SA-inv3 in terms of all three
evaluation metrics. When combined with C3D, the HMM-
c3d-inv3 improves the performance to 39.9% in the BLEU@4,
28.3% in the METEOR, and 40.9% in the CIDEr-D, respec-
tively. The performance improvement further demonstrates
the effectiveness of the proposed model.

4.4 Qualitative Analysis

To better understand the proposed HMM, we first visualize
some generated sentences and attributes on the test set of
MSVD in Fig. 4. From these generated results, we can see that
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Attributes from Video:
Ball, teams, players, game, 
people, men, player, soccer, 
football, playing

Generated Sentence:
SA:    people are playing
HMM: a group of men are playing 
soccer

Reference Sentence:
1. two teams are playing soccer
2. men are playing football
3. some men are playing soccer

Attributes from Video:
playing, going, person, 
moving, man, dog, front, 
funny, white, cute

Generated Sentence:
SA:    a man is playing a guitar
HMM: a man is playing with a dog

Reference Sentence:
1. a man is petting two dogs
2. a man pets some dogs
3. a man is play with pets

Attributes from video:
child, little, baby, kid, 
toddler, cute, playing, using, 
trying, high

Generated Sentence:
SA: a baby is playing on a couch
HMM a baby is playing with a toy

Reference Sentence:
1. a baby is playing with toys
2. a toddler is picking up toys
3. the baby is putting away her toys

Attributes from video:
pan, woman, cooking, pot, 
preparing, frying, person, 
something, mixture, bowl

Generated Sentence:
SA: a woman is cooking the kitchen
HMM a woman is cooking some 
sort of food in a pan

Reference Sentence:
1. a lady is cooking food
2. the lady prepare the food
3. a person making nabeyaki udon

noodle

Attributes from video:
Man, his, playing, animal, 
boxing, lady, black, person, 
around, doing

Generated Sentence:
SA: the monkey is playing a monkey
HMM: two men are boxing in a 
boxing ring

Reference Sentence:
1. two men are boxing in a ring
2. two men fight inside a ring
3. two persons are fighting

Figure 4: Descriptions and Attributes generated on the test set of MSVD. The attributes (only show top
10 words) are generated by our proposed video attribute detector. The generated sentences are from the
baseline method SA [39] and our proposed HMM, respectively. We also show the human-annotated reference
sentences.

our proposed HMM can generate more accurate descriptions
compared with the baseline method SA [39]. For example, the
generated word “dog ” by HMM is much better than the word
“guitar ” generated by SA for the second video. Moreover,
our proposed HMM can capture more details about video
content than SA. For example, HMM can generate the fine-
grained words “a group of ” and “soccer ” while the generated
sentence by SA is ambiguous in the first video. It should be
noted that our hierarchical memories provide a more compact
interactions for the attention of visual features and semantic
attributes. Even the video attribute detector does not detect
the attribute word “toy ”, our HMM can also produce the
key word “toy ” compared with SA. We further visualize
the attention weight shift for temporal visual features and
semantic attributes on sampled frames in a test video in Fig.
5. We can see that the attention shift of each word in the
generated sentence is much consistent to the video contents
and attributes, which demonstrates that the proposed model
can enhance the attention and memory modeling for video
captioning.

4.5 Model Analysis

To figure out how these additional memory modules con-
tribute to our proposed HMM, we design some incremental
experiments on it. Table 3 shows the performance of six differ-
ent proposed model variants on the MSVD dataset using the
VGG19 feature. The first row shows the results of the baseline
of the proposed HMM which does not contains the textual

memory, the visual memory and the attribute memory. The
second line to the sixth line shows the results of the proposed
HMM which contains part or all of the three memory mod-
ules. In particular, the HMM (only-T) and HMM (only-V)
both performs better than the baseline HMM (no-T-V-A),
especially in the CIDEr-D metric. Combining these two mem-
ory modules, the HMM (only-T-V) achieves 47.5% in the
BLEU@4 metric, making the improvement over the baseline
HMM (no-T-V-A) by 47.5−45.9

45.9
= 3.5%, which proves the

effectiveness of additional textual memory and visual mem-
ory. Similarly, the HMM (only-A) can achieve much better
performance than the baseline HMM (no-T-V-A), which sug-
gests that semantic attributes are very important to video
captioning. When adding all these memory modules together,
the HMM (T-V-A) can further obtain the best performance
in these model variants in terms of all evaluation metrics.
These results demonstrate the effectiveness of each additional
memory module in the task.

5 CONCLUSIONS

In this paper, we have proposed a hierarchial memory mod-
el which enhances video feature and attribute attention for
attribute-based video captioning. To exploit more rich se-
mantic attributes for videos, we improve the previous MIL
framework in terms of network architecture. To incorporate
the semantic attributes into our system, we attach the LSTM-
based text decoder and the attention model for video presen-
tations with textual memory and visual memory respectively
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HMM a man is jumping in the pool
Ref: a men is jumping in swimming pool

man

jumping

pool

Attributes man, doing, water, sea, ocean, jump, 
lake,  person, his, showing

man

jumping

pool

Attention for features Attention for attributes

Figure 5: Visualization of generated sentences, attributes and corresponding attention shift about a video on
the test of MSVD. The top displays sampled 28 frames from the video, the left shows the attention shift on
the sampled frames with regard to each key word in the generated sentence, the right shows the attention
shift on the top 10 attributes stored in the attribute memory about each key word in the generated sentence.

Method BLEU@4 METEOR CIDEr-D

HMM (no-T-V-A) 45.9% 30.5% 61.8%
HMM (only-T) 46.8% 30.8% 63.6%
HMM (only-V) 46.2% 31.2% 63.5%
HMM (only-T-V) 47.5% 31.6% 65.7%
HMM (only-A) 47.1% 31.8% 64.4%
HMM (T-V-A) 48.7% 32.4% 67.6%

Table 3: The performance comparison on the MSVD
dataset of six different model variants with the VG-
G19 feature in terms of three evaluation metrics.
Here T, V and A denotes Textual Memory, Visual
Memory and Attribute Memory, respectively.

to guide proper visual information flow into the selection
of semantic attributes. The performance comparisons with
other state-of-the-art methods on two publicly benchmark
datasets demonstrate the effectiveness of our model.
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