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Abstract—Image and sentence matching has made great progress recently, but it remains challenging due to the existing large

visual-semantic discrepancy. This mainly arises from two aspects: 1) images consist of unstructured content which is not semantically

abstract as the words in the sentences, so they are not directly comparable, and 2) arranging semantic concepts in different semantic

order could lead to quite diverse meanings. The words in the sentences are sequentially arranged in a grammatical manner, while the

semantic concepts in the images are usually unorganized. In this work, we propose a semantic concepts and order learning framework

for image and sentence matching, which can improve the image representation by first predicting semantic concepts and then

organizing them in a correct semantic order. Given an image, we first use a multi-regional multi-label CNN to predict its included

semantic concepts in terms of object, property and action. These word-level semantic concepts are directly comparable with the words

of noun, adjective and verb in the matched sentence. Then, to organize these concepts and make them express similar meanings as

the matched sentence, we use a context-modulated attentional LSTM to learn the semantic order. It regards the predicted semantic

concepts and image global scene as context at each timestep, and selectively attends to concept-related image regions by referring to

the context in a sequential order. To further enhance the semantic order, we perform additional sentence generation on the image

representation, by using the groundtruth order in the matched sentence as supervision. After obtaining the improved image

representation, we learn the sentence representation with a conventional LSTM, and then jointly perform image and sentence matching

and sentence generation for model learning. Extensive experiments demonstrate the effectiveness of our learned semantic concepts

and order, by achieving the state-of-the-art results on two public benchmark datasets.

Index Terms—Semantic concept, semantic order, context-modulated attention, image and sentence matching

Ç

1 INTRODUCTION

THE task of image and sentence matching refers to mea-
suring the visual-semantic similarity between an image

and a sentence. It has been widely applied to the application
of image-sentence cross-modal retrieval, e.g., given an
image query to find similar sentences, namely image anno-
tation, and given a sentence query to retrieve matched
images, namely text-based image search. Recently, much
progress in this field has been achieved, but it is still a non-
trivial task due to the intrinsic huge visual-semantic dis-
crepancy. The discrepancy is mainly affected by two latent
factors, namely semantic concept and semantic order.

Taking an image and its matched sentence in Fig. 1 for
example, main objects, properties and actions appearing in
the image are: {cheetah, gazelle, grass}, {quick, young, green}
and {chasing, running}, respectively. These high-level seman-
tic concepts are the essential content to be compared with
the matched sentence, but they cannot be easily represented
from the pixel-level image. Most existing methods [21], [26],
[33] indistinctively represent all the concepts together by
extracting the image global scene, in which the concepts are
tangled with each other. As a result, some primary concepts
in the foreground tend to be dominant, while other second-
ary background ones will probably be ignored, which is not
optimal for fine-grained image and sentence matching. To
comprehensively predict all the concepts for the image, a
possible approach is to adapt the attribute learning frame-
works [12], [55], [56] for concept prediction. But such a
approach has not been well investigated in the context of
image and sentence matching.

In addition to semantic concepts, how to correctly organize
them, namely semantic order, plays an even more important
role in the visual-semantic discrepancy. As illustrated in
Fig. 1, given the semantic concepts mentioned above, if we
incorrectly set their semantic order as: a quick gazelle is chasing
a young cheetah on grass, then it would have completely differ-
entmeanings comparedwith the image content, aswell as the
matched sentence. But directly learning the correct semantic
order from separated semantic concepts is very difficult, since
there potentially exist too many incorrect orders that could
semantically make sense. We could resort to the image global
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scene as auxiliary information, which indicates the correct
semantic order as spatial configurations among semantic con-
cepts, e.g., the cheetah is on the left of the gazelle. But it is
unclear how to effectively use them to organize the semantic
concepts, andmake the learnt semantic order be directly com-
parablewith the sequential order in thematched sentence.

Alternatively, we could generate a descriptive sentence
from the image (i.e., to image captioning) as its textual repre-
sentation, which learns both semantic concepts and order in
an end-to-end manner. Thus the image and sentence match-
ing problem is transformed to the task of matching the gener-
ated sentence and matched one. However, the image
captioning itself is already a very challenging problem, even
those state-of-the-art image captioning methods [49] cannot
always generate very realistic sentences that capture all image
concepts. Such information losswill inevitably degenerate the
quality of the following sentence matching. In fact, these
image captioning methods usually cannot achieve high per-
formance for image and sentencematching [9], [49]. To reduce
the information loss, we alsomake the attempt to directly sort
already extracted words of semantic concepts, but find it still
cannot achieve well performance due to the limited number
of concepts, as explained in Section 3.3.

In this work, to bridge the visual-semantic discrepancy
between image and sentence, we propose a semantic concepts
and order learning framework, which improves the image
representation by first learning semantic concepts and then
organizing them in a correct semantic order. To learn the
semantic concepts, we exploit a multi-regional multi-label
convolutional neural network (CNN) that can simultaneously
predict multiple concepts in terms of object, property, action,
etc. The input of this CNN contains multiple selectively
extracted proposals from the image, which can comprehen-
sively capture all the semantic concepts regardless of whether
they are in the foreground or background.

To organize the extracted semantic concepts in a semantic
order, we develop a context-modulated attentional LSTM.
The LSTM can selectively focus on image regions related to
different concepts at each timestep, recurrently shift its atten-
tion by referring to image context across adjacent timesteps,
and sequentially aggregate representations of concept-related
regions within several timesteps in a sequential order. The
image context is the gated fusion of semantic concepts and
image global scene, which includes not only individual con-
cepts but also their spatial configurations to guide the seman-
tic order learning. To further enhance the semantic order, we
use the groundtruth order in the matched sentence as super-
vision and force the aggregated image representation to be
able to generate the matched sentence.

After improving the image representation with both
semantic concepts and order learning, we match it with the
sentence representation obtained by a conventional LSTM
[19]. Then the whole model are learnt by jointly performing
image and sentence matching and sentence generation, with
a structured objective and a generation objective, respec-
tively. To demonstrate the effectiveness of the proposed
model, we perform experiments of image annotation and
retrieval on two publicly available datasets: Flickr30K [60]
and MSCOCO [30], and achieve the state-of-the-art results.

Our main contributions can be summarized as follows.

� We propose a semantic-enhanced image and sen-
tence matching framework, where semantic concepts
and order can be effectively learnt by multi-regional
multi-label CNN and context-modulated attentional
LSTM, respectively.

� We model the context modulation in the attentional
procedure, which explicitly incorporates semantic
concepts and global scene as reference information
for accurate localization of concept-related regions.

� We demonstrate the joint learning of image and sen-
tence matching and sentence generation can greatly
benefit both two individual tasks.

� We achieve the current state-of-the-art performance
on image and sentence matching .

It should be noted that this paper is a systematic extension
of our preliminary conference versions [21], [22]. The present
work adds to the initial versions in significant ways. First, we
introduce the explicit semantic order learning with context-
modulated attentional LSTM on concept-related regions (in
Section 3.3.1). Experimentally, we demonstrate that perfor-
mance can be promoted in comparison to the previous
implicit order learning that purely focuses on concepts. Sec-
ond, we improve the context-modulated attention by incor-
porating a gated fusion scheme on semantic concepts and
global scene as image context (in Section 3.3.2). Third, we
add considerable new experimental results in terms of abla-
tion study, parameter analysis, and intuitive evaluation. In
addition, we compare with a number of recently published
papers and confirm that our model still outperforms existing
methods using multiple evaluation metrics.

2 RELATED WORK

2.1 Visual-Semantic Embedding Based Methods

Frome et al. [13] propose the first visual-semantic embed-
ding framework, in which ranking loss, CNN [28] and
Skip-Gram [35] are used as the objective, image and word
encoders, respectively. Under the similar framework, Kiros
et al. [25] replace the Skip-Gram with LSTM [19] for
sentence representation learning, Vendrov et al. [47] use a
new objective that can preserve the order structure of
visual-semantic hierarchy, and Wang et al. [51] additionally
consider within-view constraints to learn structure-preserv-
ing representations. Yan and Mikolajczyk [58] associate
the image and sentence using deep canonical correlation
analysis as the objective, where the matched image-sentence
pairs have high correlation. Based on the similar frame-
work, Klein et al. [26] use Fisher Vectors (FV) [39] to learn
more discriminative representations for sentences, and

Fig. 1. Illustration of the semantic concepts and semantic order (best
viewed in colors).
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Lev et al. [29] alternatively use RNN to aggregate FV and
further improve the performance.

In addition to the globalmatchingmethods, Karpathy et al.
[23], [24] make the first attempt to perform local similarity
learning between fragments of images and sentences with
a structured objective. Plummer et al. [40] collect region-
to-phrase correspondences for instance-level image and sen-
tence matching. Ma et al. [33] exploit a multimodal CNN for
matching image and sentence, which can be regarded as an
end-to-end framework for similarity score prediction. In con-
trast to them, we consider to extract semantic concepts from
local image regions and then learn their semantic order.

2.2 Image Captioning Based Methods

Image captioning methods [12] can also be extended to deal
with image-sentence matching, by first generating the sen-
tence given an image and then comparing the generated
sentence with groundtruth one. Chen and Zitnick [7] use a
multimodal auto-encoder for bidirectional mapping, and
measure the similarity using the cross-modal likelihood and
reconstruction error. Mao et al. [34] propose a multimodal
RNN model to generate sentences from images, in which
the perplexity of generating a sentence is used as the simi-
larity. Donahue et al. [9] design a long-term recurrent con-
volutional network for image captioning, which is also
extended to image and sentence matching as well. Vinyals
et al. [48], [49] develop a neural image captioning generator
and show the effectiveness on the image and sentence
matching. However, these models are originally designed
to predict grammatically-complete sentences, so their per-
formance on measuring the image-sentence similarity is not
very well. Different from them, our work focuses on the
similarity measurement, which is especially suitable for the
task of image and sentence matching.

2.3 Deep Attention Based Methods

Our proposedmodel is also related to somemethods simulat-
ing visual attention [52]. Alex Graves [15] exploits RNNs and
differentiable Gaussian filters to simulate the attention mech-
anism, and applies it to handwriting synthesis. Gregor et al.
[16] introduce the deep recurrent attentive writer for image
generation, which develops a novel spatial attention mecha-
nism based on 2-dimensional Gaussian filters to mimic the
foveation of human eyes. Ba et al. [3] present a recurrent
attention model that can attend to some label-relevant
image regions of an image for multiple objects recognition.
Bahdanau et al. [4] propose a neuralmachine translatorwhich
can search for relevant parts of a source sentence to predict a
target word. Xu et al. [57] develop an attention-based model
which can automatically learn to fix gazes on salient objects in

an image and generate the corresponding annotated words.
Different from these models, this work focuses more on the
modelling of context information [1] during attention to com-
pensate for the lack of semantic information, and propose
context-modulated attention to find concept-related image
regions for semantic order learning.

3 SEMANTIC CONCEPTS AND ORDER LEARNING

We illustrate our proposed semantic concepts and order
learning framework for image and sentence matching in
Fig. 2. Given an image, we first predict its semantic concepts,
e.g., people and dog, from local image regions, as well as the
global scene indicating configurations among these concepts.
Then the predicted concepts and scene are adaptively com-
bined in a gated way, which serve as the reference informa-
tion in the following context-modulated attention module to
find concept-related image regions (marked by circles with
different colors). To learn the semantic order of these con-
cepts, we sequentially feed the concept-related regions into a
LSTM at different timesteps, and then aggregate them in a
desired semantic order. Note that the semantic order is not
only learnt during the cross-modal matching with the repre-
sentation of matched sentence, but also enhanced from an
additional procedure of sentence generation under the super-
vision of groundtruth order in thematched sentence.

In the next, we will detail the proposed semantic con-
cepts and order learning framework from the following
aspects: 1) sentence representation learning with a conven-
tional LSTM, 2) semantic concept extraction with a multi-
regional multi-label CNN, 3) semantic order learning with a
context-modulated attentional LSTM and sentence genera-
tion, and 4) model learning with joint image and sentence
matching and sentence generation.

3.1 Sentence Representation Learning

For sentences, their included words of noun, adjective and
verb directly correspond to the visual semantic concepts of
object, property and action, respectively. The semantic
order of these semantic-related words is intrinsically exhib-
ited by the sequential nature of sentence. To learn the sen-
tence representation that can capture those semantic-related
words and model their semantic order, we use a conven-
tional LSTM, similar to [25], [47]. The LSTM has multiple
components for information memorizing and forgetting,
which can well suit the complex properties of semantic con-
cepts and order. We sequentially feed all the words of a sen-
tence into the LSTM at different timesteps, and then regard
the hidden state at the last timestep as the desired sentence
representation s 2 RH .

Fig. 2. The proposed semantic concepts and order learning framework (best viewed in colors).
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3.2 Image Semantic Concept Extraction

For images, their semantic concepts refer to various objects,
properties and actions, which are represented in the visual
content. The existing datasets do not provide this information
for images at all but only matched sentences, so we have to
predict them with an additional model. To learn such a
model, we manually build a training dataset following [12],
[55]. In particular, we only keep the nouns, adjectives, verbs
and numbers as semantic concepts, and eliminate all the
semantic-irrelevant words from the sentences. Considering
that the size of concept vocabulary could be very large, we
ignore those words that have very low use frequencies. In
addition, we unify the different tenses of verb, and the singu-
lar and plural forms of noun to further reduce the vocabulary
size. Finally, we obtain a vocabulary containing K semantic
concepts. Based on this vocabulary, we can generate the
training dataset by selecting multiple words from sentences
as the groundtruth semantic concepts.

Then, the prediction of semantic concepts is equivalent to
a multi-label classification problem. Many effective models
on this problem have been proposed recently [14], [50], [53],
[54], [55], which mostly learn various CNN-based models as
nonlinear mappings from images to the desired multiple
labels. Similar to [53], [55], we use the VGGNet [44] pre-
trained on the ImageNet dataset [42] as our multi-label
CNN. To suit the multi-label classification, we modify the
output layer to have K outputs, each corresponding to the
predicted confidence score of a semantic concept. We then
use the sigmoid activation instead of softmax on the out-
puts, so that the task of multi-label classification is trans-
formed to multiple tasks of binary classification [20]. Given
an image, its multi-hot representation of groundtruth
semantic concepts is yi 2 f0; 1gK and the predicted score
vector by the multi-label CNN is pi 2 ½0; 1�K , then the model
can be learned by optimizing the following objective:

Lcnn ¼
XK
c¼1

log ð1þ eð�yi;cpi;cÞÞ: (1)

The optimization can be regarded as a fine-tuning process,
in which Dropout [45] is used to reduce the over-fitting.

During testing, we perform the concept prediction in a
regional way, because the semantic concepts usually vary in
size and appear in different locations including both fore-
ground and background. As shown in Fig. 3, given a testing
image, we first extract hundreds of region proposals using
Multiscale Combinatorial Grouping (MCG) [41], and then
cluster them into c clusters of hypothesis using Normalized
Cut (NCut) [43]. By selecting the top h hypotheses from
each cluster according to their predictive scores, we obtain
totally c� h image regions, similar to [53]. By resizing these
regions to square shapes and separately feeding them into

the learned multi-label CNN, we can obtain a set of pre-
dicted confidence score vectors of local semantic concepts.
We then perform element-wise max-pooling across these
score vectors to obtain a single vector, which includes the
desired confidence scores for all the semantic concepts.

3.3 Image Semantic Order Learning

After obtaining the semantic concepts, how to reasonably
organize them in a correct semantic order plays an essential
role to the image and sentence matching. Even though
based on the same set of semantic concepts, combining
them in different orders could lead to completely opposite
meanings. For example in Fig. 3, if we organize the
extracted semantic concepts including dog, sitting and people
as: a people is sitting on the dog, then its meaning would be
very different from the original image content.

To learn the desired order, a straightforward way is to
select the top-k extracted concepts according to the predicted
scores, and then sort them in the word level. But the size of
concept vocabulary is very limited, many excluded concepts
with low use frequencies (e.g., otter) are usually predicted as
appearance similar but incorrect concepts (e.g., dog). The
incorrect concepts are inconsistent with the image content,
which cannot be well associated with the sentence and thus
degenerate the performance. Therefore, we do not directly
select and sort the concepts in the word level, but instead in
the level of concept-related image regions. We actually use
the semantic concepts in amore “soft” manner, by correlating
them with the original image to find related regions. In this
way, the incorrectly predicted concepts can also find the right
image regions due to their similar appearances, so that the
model can largely tolerate the potential errors.

3.3.1 Context-Modulated Attention

For an image as shown in Fig. 4a, directly obtaining its con-
cept-related regions is difficult, since the image content is very
complex where the semantic concepts could appear in any
location with various scales. Considering that 1) not all image
regions are necessary since images consist of too much con-
cept-irrelevant information, and 2) the desired concept-related
regions usually exist as a combination of multiple evenly
divided boxes, e.g., the concept of dog covers about twelve
boxes, we decide to first predict the concept-related attention
weights for all the boxes to highlight those important ones,
and then fuse their representations according to their impor-
tance to finally represent the desired concept-related regions.

To achieve this goal, we develop the context-modulated
attentional LSTM, which selectively attends to multiple
image regions by predicting a sequence of concept-related
attentionmaps. It then explicitly aggregates their representa-
tions in the sequential manner of LSTM, inwhich the sequen-
tial order can be regarded as the desired semantic order for
concepts. Different from traditional attentional LSTM [57],
here we systematically study the roles of semantic concepts
and image global scene in the attentional procedure for accu-
rately uncovering the concept-related regions. It results from
a motivation that each semantic concept seldom occurs in
isolation but co-varies with other ones under a particular
scene. There are also evidences from neuroscience showing
that the global scene enables humans to quickly guide their

Fig. 3. The multi-regional multi-label CNN for image concept extraction.
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attention to regions of interest [37], e.g., the concept-related
regions in our case.

As illustrated in Fig. 4a, we represent the evenly divided
boxes by extracting feature maps of the last convolutional
layer in a CNN. We concatenate feature values at the same
location across different feature maps as the feature vector for
the corresponding convolved region, e.g., the concatenated
vector in the top left of feature maps. We denote the feature
set as aijai 2 RF

� �
i¼1;...;I

, where ai is the representation of the
ith divided box, I is the total number of boxes, and F is the
number of feature maps. We denote the previously extracted
score vector of semantic concepts as p 2 RK , and the global
scene for the image as x 2 RD. Based on these variables, we
can perform concept-related attention map prediction at the
tth timestep as follows:

pt;i ¼ ep̂t;i
XI
i¼1

:ep̂t;i ; p̂t;i ¼ fðx;p; ai;ht�1Þ;
,

(2)

where pt;i is the attention weight indicating the probability
that the ith box will be attended to at the tth timestep, and
ht�1 is the hidden state at the previous timestep. fð�Þ is a Mul-
tiLayer Perceptron (MLP) based function implementing the
context-modulated attention, which is explained as follows.

During the attentional procedure in Fig. 4b, the inde-
pendently learnt representations of divided boxes (marked
by blue arrows) are used to compute the initial attention
map, which has little information of semantic concepts.
The hidden state at the previous timestep (marked by
green arrows) indicates the already attended concept-
related regions in the image, e.g., “man”. To select which
concept-related region to attend to next, the attention
scheme should first refer to all the concept candidates,
namely image context (marked by purple arrows), to find
a concept, and then compare it with previous hidden state
to see if this concept has already been attended to. If yes
(e.g., selecting the “man”), the scheme will refer to the
image context again to find another concept. Otherwise
(e.g., selecting the “dog”), regions in the initial attention
map corresponding to the concept will be highlighted.

In such a context-modulated attentional procedure, the
information in initial attention map is additively modulated

by the image context and subtractively modulated by the
previous hidden state, to finally produce the concept-
related attention map. To efficiently simulate this, we use a
three-way MLP as follows:

fðx;p; ai;ht�1Þ ¼ wðsðgðx;pÞWg þ bvÞ þ sðaiWa þ baÞ
þ sðht�1Wh þ bhÞÞ þ b;

(3)

where s denotes the sigmoid activation function, gð�Þ is the
gated function to compute the image context, and w and b
are a weight vector and a scalar bias, respectively. Wg, Wa

and Wh are weight matrices associated with the image con-
text, box representations and hidden state, respectively.
Note that the mentioned initial attention map is implicitly
computed by using the sðaiWa þ baÞ term in this equation
to obtain attention weights.

3.3.2 Gated Fusion of Concepts and Scene as Context

In the equation above, the image context gðx;pÞ is a gated
combination of semantic concepts p and global scene x.
There are two main reasons accounting for introducing the
global scene as follows. 1) It is uneasy to decide the semantic
order only from separated semantic concepts during atten-
tion, since the order involves not only the hypernym rela-
tions between concepts, but also the textual entailment
among phrases in high levels of semantic hierarchy [47].
And 2) as illustrated in Fig. 4c, the global scene can not only
describe all the semantic concepts in a coarse level, but also
indicate their spatial configurations with each other, e.g., a
people is sitting on the bench in the left while the dog in the
middle right. Such spatial configurations have been demon-
strated can cause the perception of one concept to generate
strong expectations about other concepts [8], [37], which
can help our model to guide its attention from one observed
concept to an unobserved one, i.e., ordering the concepts.
Therefore, we propose to use the global scene1 as auxiliary
reference to facilitate the semantic order learning.

Fig. 4. Details of the proposed context-modulated attentional LSTM including a) box feature extraction, b) context-modulated attention, and c) gated
fusion of concepts and scene (best viewed in colors).

1. In practice, for efficient implementation, we use a pre-trained
VGGNet to process the whole image content, and then extract the vec-
tor in the last fully-connected layer as the desired global scene.
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To model such a reference procedure, a simple way is to
equally sum the global scene with semantic concepts
together as image context. But considering that the content
of different images can be diverse, so the relative impor-
tance of semantic concepts and scene is not equivalent in
most cases. For those images with complex content, the pre-
dictions of their concepts might be distracted by back-
ground, so the global scene might be more reliable. Inspired
by this, we design a gated fusion unit that can selectively
balance the relative importance of semantic concepts and
scene. The unit acts as a gate that controls how much infor-
mation of the semantic concepts and scene contributes to
their fused image context. As illustrated in Fig. 4c, after
obtaining the global scene vector x and concept score vector
p, their gated fusion can be formulated as:

bx ¼ Wxxk k2; bp ¼ Wpp
�� ��

2
; t ¼ sðUxxþ UppÞ

gðx;pÞ ¼ t� bxþ ð1� tÞ � bp; (4)

where �k k2 denotes the l2-normalization. The use of sigmoid
function s is to rescale each element in the gate vector
t 2 RH to ½0; 1�, so that gðx;pÞ becomes an element-wise
weighted sum of x and p. Different from [38], our gated
fusion unit especially uses the l2-normalization during gat-
ing to re-scale the transformed concepts and context, so that
the fused vector is robust to the cross-modal similarity com-
putation. If the normalization is eliminated, we experimen-
tally find the performance becomes even worse than the
simple summation.

3.3.3 Concept-Related Region Aggregation

According to the predicted concept-related attention maps
by context-modulated attention, we compute the weighted
sum representations a0t to adaptively describe the attended
image regions. We sum all the products of element-wise
multiplication between each box representation (e.g., ai)
and its corresponding attention weight (e.g., pt;i):

a0t ¼
XI
i¼1

pt;iai; (5)

where image boxes with higher attention weights contribute
more to the representations of concept-related region.

From the 1st to T th timestep, we obtain a sequence of rep-
resentations of concept-related regions a0t

� �
t¼1;���;T , where T

is the total number of timesteps. To aggregate these regions
for the whole image representation, we use a LSTM network
to sequentially take them as inputs, where the hidden states
ht 2 RH
� �

t¼1;...;T
dynamically propagate the representations

of image regions until the end. The LSTM includes various
gated mechanisms which can well suit the complex nature of
semantic order. The hidden state at the last timestep hT can
be regarded as the desired image representation with seman-
tic order.

Note that the attentional LSTMs in [3], [4], [57] do not con-
sider the modeling of context modulation in their attention
schemes, so they have to alternatively use step-wise labels to
guide the prediction of attended regions. But such strong
supervision can only be available for limited tasks, e.g., the
sequential words of sentence for image captioning [57], and
multiple class labels for multi-object recognition [3]. In fact,

we perform experiments without using the context modula-
tion in Section 4.7, but find that some concept-related regions
like “cat” and “giraffe” cannot be well attended to. It mainly
results from that the attention scheme can only refer to the
initial attention map to select which concept to attend to
next, but the initial attention map is computed from box rep-
resentations which contains little information of semantic
concepts and order.

3.3.4 Sentence Generation as Supervision

To learn the semantic concepts and order for image and sen-
tence matching, an possible end-to-end approach is to gen-
erate a sentence directly from the image, similar to image
captioning [55]. By regarding the predicted sentence as the
representation of image, the task of image and sentence
matching is thus transformed to the matching task between
generated sentence and groundtruth one. However, the per-
formance of such an approach heavily relies on the quality
of generated sentence. In particular, although the current
image captioning methods can generate semantically mean-
ingful sentences with desired order, the accuracy of their
generated sentences on capturing image concepts is not
very high. Even a small error in the sentences can be ampli-
fied and affects the following similarity measurement in a
fine-grained word level. Actually, even the state-of-the-art
image captioning models [9], [34], [49] cannot perform very
well on the image and sentence matching task. We also
implement a similar model (as “sce + sen”) for comparison
in Section 4.3, and find it only achieves inferior results.

In fact, we do not have to generate a grammatically-com-
plete sentence as our image representation, since we already
have the aggregated image representation from concept-
related regions. But we can enhance the semantic order
learning by supervising the image representation with
groundtruth semantic order in the matched sentence during
a sentence generation precedure, just like image captioning.
In particular, we feed the image representation into the ini-
tial hidden state of a generative LSTM, and ask it to be capa-
ble of generating the matched sentence. During the cross-
word and cross-phrase generations, the image representa-
tion can thus learn the hypernym relations between words
and textual entailment among phrases as the semantic
order. Given a sentence fwjjwj 2 f0; 1gGgj¼1;...;J , where
each word wj is represented as an one-hot vector, J is the
length of the sentence, and G is the size of word dictionary,
we can formulate the sentence generation as follows:

it ¼ sðWwiðFwtÞ þWhiht�1 þ biÞ;
ft ¼ sðWwfðFwtÞ þWhfht�1 þ bfÞ;
ot ¼ sðWwoðFwtÞ þWhoht�1 þ boÞ;bct ¼ tanhðWwcðFwtÞ þWhcht�1 þ bcÞ;
ct ¼ ft � ct�1 þ it � bct; ht ¼ ot � tanhðctÞ;
qt ¼ softmaxðFTht þ bpÞ; e ¼ argmaxðwtÞ;
P ðwtjwt�1;wt�2; . . . ;w0; x;pÞ ¼ qt;e

(6)

where ct, ht, it, ft and ot are memory state, hidden state,
input gate, forget gate and output gate, respectively, e is the
index of wt in the word vocabulary, and F 2 RD�G is a
word embedding matrix. During the sentence generation,
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since all the words are predicted in a chain manner, the
probability P of current predicted word is conditioned on
all its previous words, as well as the input semantic con-
cepts p and global scene x at the initial timestep.

3.4 Joint Matching and Generation

During the model learning, we jointly perform image and
sentence matching and sentence generation, by minimizing
the following combined objectives:

L ¼ Lmat þ �� Lgen þ m� Lreg; (7)

where � and m are tuning parameters for balancing and
regularization.

The Lmat is a structured objective that encourages the
cosine similarity scores of matched images and sentences to
be larger than those of mismatched ones:X

ik

max 0;m� sii þ sikf g þmax 0;m� sii þ skif g;

where m is a margin parameter, sii is the score of matched
ith image and ith sentence, sik is the score of mismatched
ith image and kth sentence, and vice-versa with ski. We
empirically set the total number of mismatched pairs for
each matched pair as 128 in our experiments.

The Lgen is the negative conditional log-likelihood of the
matched sentence given the semantic concepts p and global
scene x:

�
X
t

logP ðwtjwt�1;wt�2; . . . ;w0; x;pÞ;

where the detailed formulation of probability P is shown in
Equation (6). Note that we use the predicted semantic con-
cepts rather than groundtruth ones in our experiments.

The Lreg is a regularization term [57] to constrain the sum
of attention weights of any box at all timesteps as follows:

X
i

c�
X
t

pt;i

 !
;

where c is a constant and we empirically find that setting
c ¼ 1 can lead to well performance. Without the regulariza-
tion term, our model is inclined to focus on the same image
regions at all timesteps. It might result from the fact that
always selecting the most informative regions can largely
avoid errors. But it is not good for our model to comprehen-
sively perceive the entire image content to find different
concept-related regions. So we add this term to encourage
the model to pay equal attention to every box rather than a
certain one for information maximization.

It should be noted that we do not need to generate the
sentence during testing. We only have to compute the image
representation and then compare it with the sentence repre-
sentation s to obtain their similarity score.

4 EXPERIMENTAL RESULTS

To demonstrate the effectiveness of the proposed model, we
perform several experiments in terms of image annotation
and retrieval on two publicly available datasets.

4.1 Datasets and Protocols

The two evaluation datasets and their experimental proto-
cols are described as follows. 1) Flickr30k [60] consists of
31783 images collected from the Flickr website. Each image
is accompanied with 5 human annotated sentences. We use
the public training, validation and testing splits [25], which
contain 28000, 1000 and 1000 images, respectively. 2)
MSCOCO [30] consists of 82783 training and 40504 valida-
tion images, each of which is associated with 5 sentences.
We use the public training, validation and testing splits
[25], with 82783, 4000 and 1000 (or 5000) images, respec-
tively. When using 1000 images for testing, we perform 5-
fold cross-validation and report the averaged results.

4.2 Implementation Details

The commonly used evaluation criterions for image annota-
tion and retrieval are “R@1”, “R@5” and “R@10”, i.e., recall
rates at the top 1, 5 and 10 results. We also compute an addi-
tional criterion “mR” by averaging all the 6 recall rates, to
evaluate the overall performance for both image annotation
and retrieval.

We use the 19-layer VGGNet [44] to initialize the multi-
regional multi-label CNN to predict semantic concepts. We
also use the 19-layer VGG network to initialize another CNN
to extract 512 feature maps (with a size of 14 × 14) in “conv5-
4” layer as the representations for evenly divided boxes, and
a feature vector in “fc7” layer as the image global scene. The
dimensions of box representations and global scene features
are F ¼ 512 andD ¼ 4096, respectively, and the total number
of boxes is I ¼ 196 (14 × 14). We perform 10-cropping [26]
from the images and then separately feed the cropped
regions into the network. The final global scene is averaged
over 10 cropped regions. In addition, we also try to use the
152-layer ResNet [18] to initialize the CNN. We accordingly
extract 2048 feature maps (with a size of 7 × 7) in the last con-
volutional layer as the representations for evenly divided
boxes, and a feature vector in the last fully-connected layer as
the image global scene. The dimensions of box representa-
tions and global scene features are F ¼ 2048 and D ¼ 1000,
respectively, and the total number of boxes is I ¼ 49 (7 × 7).

For sentences, the dimension of embedded word is
D ¼ 300. We set the max length for all the sentences, i.e., the
number of words, as J ¼ 50, and use zero-padding when a
sentence is not long enough. Other parameters are empiri-
cally set including the number of clusters c=10, number of
hypotheses h ¼ 5, dimension of hidden state in LSTM
H ¼ 1024, number of semantic concepts K ¼ 256, balancing
parameter � ¼ 1, regularization parameter m ¼ 100, and
margin parameterm ¼ 0:2.

During the model training, we use stochastic gradient
descent with a learning rate of 0.01, momentum of 0.9,
weight decay of 0.0005, batch size of 128, and gradient clip-
ping at 0.1. The model is trained for 30 epochs to guarantee
its convergence.

4.3 Study of Ablation Models

To systematically evaluate the contributions of different
model components, we design various ablation models as
shown in Table 1. The variable model components are
explained as follows: 1) “sce (1-crop)” and “sce (10-crop)”
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refer to using the global scene by cropping 1 or 10 regions
from images, respectively. 2) “cnp” denotes using predicted
semantic concepts, and “cnp (VG)” uses the external Visual
Genome (VG) dataset [27] instead of our constructed one for
semantic concept prediction. 3) “cnp + sce (C)” and “cnp +
sce” are two different ways that combine semantic concepts
and scene via direct summation and gated fusion unit, respec-
tively. 4) “iatt” and “satt” perform the traditional attention on
images and sentences, respectively. “iatt (cnps)” performs
attention on multiple score vectors of semantic concept from
local image regions rather than concept-related regions. “iatt +
cnp” performs the proposed context-modulated attention by
regarding “cnp” as its context. 5) “iatt + cnp + sce”, “iatt + cnp
+ sce (R)” and “iatt + cnp + sce (B)” organize the extracted
concept-related regions with LSTMs in three different orders
including forward, random and backward, respectively. The
forward order learns to fuse attended regions along the time
axis, randomorder performs the fusion by randomly selecting
a region each time, and backward order reverses the learned
forward order. 6) “sen + sce” uses the state-of-the-art image
captioning method [49] to generate sentences from images
and then regards the sentences as image representations for
matching. Different from it, “gen + sce” enhances the seman-
tic order by using the sentence generation as supervision as
described in Section 3.3.4. 7) “gen + sce (S)” additionally uses
the scheduled sampling [5]. “gen + sce (E)” indicates that the
parameters of two word embedding matrices for sentence
representation and sentence generation are shared.

The results of ablation models on the Flickr30k and
MSCOCO datasets are shown in Table 1, from which we
can obtain the following conclusions in three aspects.

Gated Fusion of Concepts and Scene. 1) Cropping 10 image
regions (as “sce (10-crop)”) can achieve much robust global

scene features than cropping only 1 region (as “sce (1-
crop)”). 2) Only using the semantic concepts (as “cnp”) can
already achieve good performance, especially when the
training data are sufficient on the MSCOCO dataset. 3)
Using the external VG dataset for semantic concept predic-
tion (as “cnp (VG)”) can achieve better performance on the
Flicker30k dataset but worse performance on the MSCOCO
dataset. It is probably because the visual content of VG and
MSOCOCO is quite different, and the learned predictor on
one dataset cannot well generalize to the other one. 4) Sim-
ply summing the concepts and scene (as “cnp + sce (C)”)
can further improve the result, because the image scene con-
tains the spatial configurations of concepts that are compli-
mentary to the semantic concepts. 5) Using the proposed
gated fusion unit (as “cnp + sce”) performs better, due to
the effective importance balancing scheme.

Context-Modulated Attention. 6) Performing the attention
scheme on multiple local semantic concepts (as “iatt (cnps)”)
can achieve better results than non-sorted concepts (as
“cnp”), which demonstrates the effectiveness of semantic
order learning. 7) Modeling concept-related image regions
(as “iatt + cnp”) is more discriminative than just concepts
(“iatt (cnps)”). 8) Only using convolutional features of image
boxes (as “iatt”) gets much worse results, mainly due to the
lack of high-level semantic concept information. 9) Addition-
ally performing the attention on sentences (as “iatt + satt”)
still cannot improve the performance, since the shuffled
semantic order in sentences cannot benefit the order learning
of images. 10) When regarding either concepts and scene as
image context and performing context-modulated attention
(as “iatt + cnp” or “iatt + sce”), the models can achieve much
better performance. 11) By fusing themwith the gated fusion
unit (as “iatt + cnp + sce”), the performance can be further

TABLE 1
Comparison Results of Image Annotation and Retrieval by Ablation Models on the Flickr30k and MSCOCO (1000 Testing) Datasets

Method

Flickr30k dataset MSCOCO dataset

Image Annotation Image Retrieval
mR

Image Annotation Image Retrieval
mR

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

sce (1-crop) 29.8 58.4 70.5 22.0 47.9 59.3 48.0 43.3 75.7 85.8 31.0 66.7 79.9 63.8
sce (10-crop) 33.8 63.7 75.9 26.3 55.4 67.6 53.8 44.7 78.2 88.3 37.0 73.2 85.7 67.9
cnp (VG) 41.3 68.8 78.8 30.5 59.0 70.2 58.1 51.7 83.4 91.6 42.8 78.4 89.8 73.0
cnp 30.9 60.9 72.4 23.1 52.5 64.8 50.8 59.5 86.9 93.6 48.5 81.4 90.9 76.8
cnp + sce (C) 39.9 71.2 81.3 31.4 61.7 72.8 59.7 62.8 89.2 95.5 53.2 85.1 93.0 79.8
cnp + sce 42.4 72.9 81.5 32.4 63.5 73.9 61.1 65.3 90.0 96.0 54.2 85.9 93.5 80.8

iatt (cnps) 31.5 62.0 73.5 23.9 53.3 65.7 51.6 60.5 87.2 93.8 49.2 82.0 91.3 77.3
iatt 26.8 53.3 65.9 21.7 49.2 62.0 46.5 39.5 71.9 84.0 33.4 70.5 83.9 63.9
iatt + satt 27.0 53.4 65.5 20.5 49.7 61.6 46.3 40.1 72.6 84.4 32.6 69.5 83.2 63.7
iatt + cnp 33.6 63.1 74.5 24.4 53.6 65.8 52.5 62.7 89.5 94.9 51.1 83.4 92.0 78.9
iatt + sce 34.9 65.1 76.3 27.1 55.6 68.4 54.6 45.3 78.9 88.6 37.2 73.5 87.0 68.5
iatt + cnp + sce (R) 35.1 66.3 77.3 27.1 59.1 68.9 55.6 56.7 84.0 88.7 49.6 80.7 88.5 74.7
iatt + cnp + sce (B) 42.8 72.7 83.3 31.7 63.4 74.0 61.3 65.1 90.2 96.4 53.9 86.0 93.2 80.8
iatt + cnp + sce 43.1 73.4 83.1 32.9 63.9 74.3 61.8 66.2 90.9 96.5 54.5 86.4 93.8 81.4

sen + sce 22.8 48.6 60.8 19.1 46.0 59.7 42.8 39.2 73.3 85.5 32.4 70.1 83.7 64.0
gen + sce (S) 34.4 64.5 77.0 27.1 56.3 68.3 54.6 45.7 78.7 88.7 37.3 73.8 85.8 68.4
gen + sce (E) 35.5 63.8 75.9 27.4 55.9 67.6 54.3 46.9 78.8 89.2 37.3 73.9 85.9 68.7
gen + sce 35.6 66.3 76.9 27.9 56.8 68.2 55.3 46.9 79.2 89.3 37.9 74.0 85.9 68.9
gen + cnp 31.5 61.7 74.5 25.0 53.4 64.9 51.8 62.6 89.0 94.7 50.6 82.4 91.2 78.4
gen + cnp + sce 44.2 74.1 83.6 32.8 64.3 74.9 62.3 66.4 91.3 96.6 55.5 86.5 93.7 81.8

iatt + cnp + sce + gen 45.9 74.9 84.8 33.9 64.9 76.0 63.4 67.5 92.2 97.0 56.5 87.4 94.8 82.6
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improved, which verifies the effectiveness of context-modu-
lated attention. 12) When either using a random semantic
order (as “iatt + cnp + sce (R)”) or reversing the semantic
order from forward direction to back direction (as “iatt +
cnp + sce (B)”), the performance degenerates heavily on both
datasets. It demonstrates that our learned forward semantic
order is more effective for image and sentence matching.

Sentence Generation as Supervision. 13) Directly using the
pre-generated sentences as image representations (as “sce +
sen”) cannot improve the performance, since the generated
sentences might not accurately include all the image con-
cepts. 14) Using the sentence generation as supervision for
semantic order learning (as “sce + gen”) is very effective.
15) But additionally performing the scheduled sampling (as
“sce + gen (S)”) cannot further improve the performance. It
is because the groundtruth semantic order is degenerated
during sampling, accordingly the model cannot learn it
well. 16) Using a shared word embedding matrix (as “sce +
gen (E)”) cannot improve the performance, which might
result from that learning a unified matrix for two different
tasks could be easily confused.

The best performance is finally achieved by the “iatt +
cnp + sce + gen”, which predicts the semantic concepts and
then learns their semantic order via context-modulated
attention and sentence generation. In the follow experiments,
we regard the “iatt + cnp + sce + gen” as our defaultmodel.

4.4 Comparison with State-of-the-Art Methods

We compare our proposed model with recent state-of-the-art
methods on the Flickr30k and MSCOCO datasets in Table 2,
as well as our two preliminary conference versions: sm-
LSMT [21] and SCO [22], marked by �. The methods marked

by “(Res)” use the 152-layer ResNet [18] for scene extraction,
while the rest ones use the default 19-layer VGGNet [44].

Using either VGGNet or ResNet on the MSCOCO data-
set, our proposed model outperforms the current state-of-
the-art models by a large margin on all 7 evaluation criteri-
ons. It demonstrates that learning semantic concepts and
order for image representations is very effective. When
using VGGNet on the Flickr30k dataset, our model gets
lower performance than 2WayNet on the R@1 evaluation
criterion, but obtains much better overall performance on
the rest evaluation criterions. When using ResNet on the
Flickr30k dataset, our model is able to achieve the best
result. Note that our model obtains much larger improve-
ments on the MSCOCO dataset than Flickr30k. It is because
the MSCOCO dataset has more training data, so that our
model can be better fitted to predict more accurate image-
sentence similarities. Note that our current model achieves
much better than our previous model SCO [22], which indi-
cates that explicitly learning semantic order with context-
modulated attentional LSTM on concept-related regions is
more useful than previous implicit order learning purely on
concepts. Our model also performs better than a recent
approach BUTD [2], which first performs the conventional
attention over outputs from a pretrained object detector,
and then fuses all attended outputs to build the image
representation. Especially on the Flickr30k dataset, even
though the predicted semantic concepts from our con-
structed dataset are less discriminative than theirs from
Visual Genome dataset (in Table 1), our overall performance
is much better than theirs. It again demonstrates the effec-
tiveness of our context-modulated attention and sentence
generation for semantic order learning.

TABLE 2
Comparison Results of Image Annotation and Retrieval on the Flickr30k and MSCOCO (1000 Testing) Datasets

Model

Flickr30k dataset MSCOCO dataset

Image Annotation Image Retrieval
mR

Image Annotation Image Retrieval
mR

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

FV [26] 35.0 62.0 73.8 25.0 52.7 66.0 52.4 39.4 67.9 80.9 25.1 59.8 76.6 58.3
DVSA [24] 22.2 48.2 61.4 15.2 37.7 50.5 39.2 38.4 69.9 80.5 27.4 60.2 74.8 58.5
MNLM [25] 23.0 50.7 62.9 16.8 42.0 56.5 42.0 43.4 75.7 85.8 31.0 66.7 79.9 63.8
m-CNN [33] 33.6 64.1 74.9 26.2 56.3 69.6 54.1 42.8 73.1 84.1 32.6 68.6 82.8 64.0
RNN+FV [29] 34.7 62.7 72.6 26.2 55.1 69.2 53.4 40.8 71.9 83.2 29.6 64.8 80.5 61.8
OEM [47] - - - - - - - 46.7 78.6 88.9 37.9 73.7 85.9 68.6
VQA [31] 33.9 62.5 74.5 24.9 52.6 64.8 52.2 50.5 80.1 89.7 37.0 70.9 82.9 68.5
RTP [40] 37.4 63.1 74.3 26.0 56.0 69.3 54.3 - - - - - - -
DSPE [51] 40.3 68.9 79.9 29.7 60.1 72.1 58.5 50.1 79.7 89.2 39.6 75.2 86.9 70.1
�sm-LSTM [21] 42.5 71.9 81.5 30.2 60.4 72.3 59.8 53.2 83.1 91.5 40.7 75.8 87.4 72.0
2WayNet [10] 49.8 67.5 - 36.0 55.6 - - 55.8 75.2 - 39.7 63.3 - -
DAN [36] 41.4 73.5 82.5 31.8 61.7 72.5 60.6 - - - - - - -
VSE++ [11] 41.3 69.0 77.9 31.4 59.7 71.2 58.4 57.2 85.1 93.3 45.9 78.9 89.1 74.6
�SCO [22] 44.2 74.1 83.6 32.8 64.3 74.9 62.3 66.6 91.8 96.6 55.5 86.6 93.8 81.8
Ours 45.9 74.9 84.8 33.9 64.9 76.0 63.4 67.5 92.2 97.0 56.5 87.4 94.8 82.6

RRF (Res) [32] 47.6 77.4 87.1 35.4 68.3 79.9 66.0 56.4 85.3 91.5 43.9 78.1 88.6 73.9
DAN (Res) [36] 55.0 81.8 89.0 39.4 69.2 79.1 68.9 - - - - - - -
VSE++ (Res) [11] 52.9 79.1 87.2 39.6 69.6 79.5 68.0 64.6 89.1 95.7 52.0 83.1 92.0 79.4
LIM (Res) [17] - - - - - - - 68.5 - 97.9 56.6 - 94.5 -
BUTD (Res) [2] 53.1 81.9 88.9 40.1 69.8 79.7 68.9 65.6 91.8 96.9 54.6 85.8 93.3 81.3
�SCO (Res) [22] 55.5 82.0 89.3 41.1 70.5 80.1 69.7 69.9 92.9 97.5 56.7 87.5 94.8 83.2
Ours (Res) 58.0 84.5 90.5 43.9 72.9 81.6 71.9 71.3 93.8 98.0 58.2 88.8 95.3 84.2

� Indicates our previous conference versions.
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The above experiments on the MSCOCO dataset follow
the first protocol [24], which uses 1000 images and their
associated sentences for testing. We also test the second pro-
tocol that uses all the 5000 images and their sentences for
testing, and present the comparison results in Table 3. From
the table we can observe that the overall results by all the
methods are lower than the first protocol. It probably
because the target set is much larger so there exist more dis-
tracters for a given query. Among all the models, the pro-
posed model still achieves the best performance, which
again demonstrates its effectiveness.

4.5 Evaluation of Predicted Semantic Concepts

Semantic Concept Visualization. To qualitatively verify the
effectiveness of our multi-regional multi-label CNN for
semantic concept prediction. We present several example
images and their predicted semantic concepts in Fig. 6. From
the figurewe can see that themulti-regionalmulti-label CNN
can predict reasonable semantic concepts with high confi-
dence scores for describing the detailed image content. For
example, road, motorcycle and riding are predicted from the
second image. We also note that the skate is incorrectly
assigned, which might result from that this image content is
complicated and the smooth country road looks like some
skating scenes.

Number of Semantic Concepts. To further study whether the
number of semantic concepts has effects on the performance.
We plot a curve in Fig. 7, in which the x-axis is the number
of concepts and the y-axis is the averaged recall rate on the
Flickr30k dataset. We can find that the performance changes

when varying the number of concepts, and the larger num-
ber leads to better performance. Especially when reducing
the number to 50, the performance drops heavily from 64 to
57 percent. It is mainly because that some images lack of
appropriate concepts for description so that they cannot be
well associated with sentences.

4.6 Evaluation of Learnt Semantic Order

Semantic Order Visualization. To verify whether the proposed
model can selectively attend to concept-related image regions
at different timesteps, as well as organize them in a semantic
order, we visualize the predicted sequential attentionmaps by
the proposed model in Fig. 5b. For each image, we resize the
predicted attention weights at the tth timestep (with a size of
14 × 14) to the same size as its corresponding original image,
so that each value in the resized map measures the impor-
tance of an image pixel at the same location. We then perform
element-wise multiplication between the resized attention
map and the original image to obtain the final attention map,
where lighter areas indicate attended concept-related regions.
From the figure we can see that ourmodel can attend to image
regions associated with different concepts at three timesteps.
Taking the middle image for example, the model sequentially
focuses on three highlighted regions indicating the concepts
of “children”, “playing” and “giraffe”, respectively.

It seems that the model learns the semantic order by find-
ing salient objects at the first and third timesteps, and their
relations (e.g., actions or environments) in the second time-
step. It is similar with most groundtruth semantic orders in
the matched sentences, in which verbs are in the middle
between two nouns. In Fig. 9, we also compute the averaged
attention maps (rescaled to the same size of 500 × 500) for all
the testing images at three different timesteps.We can see that
the proposed model statistically tends to focus on the central
regions at the first timestep, which is in consistent with the

TABLE 3
Comparison Results of Image Annotation and Retrieval on the

MSCOCO (5000 Testing) Dataset

Method
Image Annotation Image Retrieval

mR
R@1 R@5 R@10 R@1 R@5 R@10

DVSA [24] 11.8 32.5 45.4 8.9 24.9 36.3 26.6
FV [26] 17.3 39.0 50.2 10.8 28.3 40.1 31.0
VQA [31] 23.5 50.7 63.6 16.7 40.5 53.8 41.5
OEM [47] 23.3 50.5 65.0 18.0 43.6 57.6 43.0
VSE++ [11] 32.9 61.6 74.7 24.1 52.0 66.2 51.9
�SCO [22] 40.2 70.1 81.3 31.3 61.5 73.9 59.7
Ours 42.1 71.5 82.2 32.5 62.6 75.1 61.0

VSE++ (Res) [11] 41.3 69.2 81.2 30.3 59.1 72.4 58.9
LIM (Res) [17] 42.0 - 84.7 31.7 - 74.6 -
BUTD (Res) [2] 41.2 71.4 82.8 32.2 62.0 74.5 60.7
�SCO (Res) [22] 42.8 72.3 83.0 33.1 62.9 75.5 61.6
Ours (Res) 45.7 76.0 86.4 36.8 67.0 78.8 65.1

� Indicates our previous conference versions.

Fig. 5. Input images and attended image regions at three different timesteps, using image context or not, respectively (best viewed in colors).

Fig. 6. Predicted top-10 semantic concepts with their confidence scores.
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mechanism of “center-bias” in human visual attention studies
[6], [46]. It is mainly attributed to the fact that salient concepts
mostly appear in the cental regions of images. Note that the
model also attends to surrounding and lower regions at the
following two timesteps, with the goal to find other concepts
and their configurations at different locations.

Length of Semantic Order. For a given image, we need to
manually set the number of timesteps T in the context-modu-
lated attentional LSTM as the length of semantic order. Ide-
ally, T should be equal to the number of semantic concepts
appearing in the image. Therefore, the LSTM can separately
attend to all the concepts within T steps to model their
semantic order. To investigate what is the optimal length of
semantic order, we gradually increase T from 1 to 5, and ana-
lyze the impact of different lengths on the performance on
the Flick30k dataset in Table 4. From the table we observe
that our model can achieve its best performance when the
length of semantic order is 3. It indicates that it can capture
all the concept-related regions by iteratively visiting the
image for 3 times. Intuitively, when attending to an object,
the LSTM can perceive both the object itself and its descrip-
tive properties at one timestep. Considering thatmost images
usually contain 2 major objects and a kind of relation (e.g.,
action), so themodel additionally need twomore timesteps.

Note that when T becomes larger than 3, the perfor-
mance slightly drops. To investigate this, we show the pre-
dicted sequential attention maps when the length of
semantic order is 6 in Fig. 8. We can see there mainly exist 3
classes of attention maps: 1) attended regions with individ-
ual concepts, 2) attended regions with multiple concepts,
and 3) no particularly attended regions. The first class
focuses on concepts of object and property, the second one
focuses on relations among objects, and the last one focus
on global scene. In fact, using 6 as the length of semantic
order is unnecessary, since the third class of attention maps
are redundant which attend to the less informative regions.

4.7 Effectiveness of Context-Modulated Attention

Attention Map Comparison. To qualitatively validate the
effectiveness of using image context, we compare the

generated attention maps without using image context in
Fig. 5c. Without the aid of context, the model cannot pro-
duce accurate dynamical attention maps as those of using
context. In particular, it cannot well attend to semantically
meaningful concepts such as “cat” and “giraffe” with accu-
rate outlines in the first and second images, respectively. In
addition, it always finishes attending to concept-related
regions within the first two timesteps, and does not focus
on meaningful regions at the third timestep any more. These
evidences show that the context modulation can be helpful
for accurate concept discovery.

Gated Fusion Unit. The core of context modulation is the
proposed gated fusion of semantic concepts and global
scene, so it would be interesting to qualitatively analyze
which images focus more on concepts or scene. Therefore,
we plot the distribution of (sorted) weights on concepts for
1000 testing images of Flickr30k in Fig. 11. We can see that
only a few images focus more on the scene than concepts,
i.e., weight 	 0.5. We then find the visual content of these
images are either too complex or ambiguous, and their pre-
dicted concepts are inaccurate. So these images tend to
focus on the scene to extract more robust global information
for cross-modal association.

Regularization Parameter. During the context-modulated
attention, we add the regularization term to the structured
and generation objectives, with the aim to force the model to
pay equal attention to all the potential concept-related regions
at different locations. We vary the values of regularization
parameter m from 0 to 1000, and compare the corresponding
performance in Table 5. From the table, we can find that the
performance improves when m > 0, which demonstrates the
usefulness of paying attention to more diverse regions. In
addition, when m ¼ 100, the proposed model can achieve the
largest performance improvement.

4.8 Evaluation of Joint Matching and Generation

Performance of Image Captioning. Since our model jointly per-
forms sentence generation and matching, it can also be

Fig. 7. Performance versus number of semantic concepts.

TABLE 4
The Performance of Different Lengths of the Semantic Order T

T
Image Annotation Image Retrieval

mR
R@1 R@5 R@10 R@1 R@5 R@10

1 42.7 72.2 81.8 32.4 61.0 71.4 60.3
2 42.8 72.8 81.4 32.1 61.8 71.8 60.5
3 43.1 73.4 83.1 32.9 63.9 74.3 61.8
4 44.0 73.4 82.6 32.5 62.7 72.8 61.3
5 42.9 73.3 82.3 32.3 62.1 71.8 60.8

Fig. 8. Input images and attended image regions at six different timesteps (best viewed in colors).
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applied to the task of image captioning. We present the
results of image captioning on the Flickr30k dataset by our
model in Table 6, and make comparisons with four closely
related methods which share the same sentence generation
module with ours. But they do not include the matching
objective and use different modules of image representation,
e.g., attention in SAT [57], global scene in ST [49], semantic
attention in SA [59], and semantic concepts in CNP [55].

To demonstrate the effectiveness of 1) context-modulated
attention for image representation improvement and 2) joint
matching and generation for model learning, we preset the
results of our two model variants: 1) a complete version
with all the proposed modules (as “Ours”), and 2) an
incomplete one without using the matching objective but
only generation (as “Ours (w/o matching)”). Although
without using the matching objective, Our model still
achieves better performance than the compared models. It
is mainly attributed to the use of context-modulated atten-
tion to learn more useful image representations. By jointly
performing sentence matching and generation, the perfor-
mance of our model can be further improved, which again
verifies the effectiveness of our joint learning strategy.

Balancing Parameter. In addition, we test the balancing
parameter � between the structured and generation objec-
tives in Equation (7). We vary it from 0 to 100 with a multi-
plier of 10, and present their corresponding results in
Table 7. We can find that when � > 0, we can always
achieve better results. It shows that the use of sentence gen-
eration can help to enhance the learnt semantic order. When
� ¼ 1, the model can achieve its best performance. It indi-
cates that the generation objective plays an equally impor-
tant role as the structured objective.

4.9 Error Analysis

To qualitatively illustrate the performance of our proposed
model, we analyze the errors in its image annotation results
as follows. We select several hard example images with
complex content, and retrieve relevant sentences by 3 model
variants: 1) “Ours (w/o concept and order)” uses only
image scenes as image representations, 2) “Ours (w/o
order)” improves image representations using predicted
semantic concepts (in Fig. 6), and 3) “Ours” combines both
concepts and their order. We show the retrieved top-5 rele-
vant sentences by the 3 models in Fig. 10, and the predicted
semantic concepts of query images in Fig. 6.

We can see that, without the aid of the predicted seman-
tic concepts, our model cannot accurately capture the
semantic concepts from complex image content. For exam-
ple, the retrieved sentences contain some clearly wrong
semantic concepts including water and wine for the first
image, and lose important concepts such as eating and basket
for the third image. After incorporating the predicted
semantic concepts, the retrieved sentences have very similar
meanings as the images, and are able to rank groundtruth
sentences into top-5. But the top-1 sentences still do not
involve partial image details or right semantic order, e.g.,
bowl, sun and eating for the three images, respectively. By
further learning the semantic order with context-modulated
attention and sentence generation, our model is able to
retrieve the matched sentences with all the image details.

5 CONCLUSIONS AND FUTURE WORK

In this work, we have proposed a semantic concepts and
order learning framework for image and sentence matching.

Fig. 9. Averaged attention maps at three different timesteps.
Fig. 11. The distribution of weights on concepts on Flickr30k.

Fig. 10. Results of image annotation by 3 model variants. Groundtruth matched sentences are marked as red and bold, while some sentences
sharing similar meanings as groundtruths are marked as underline (best viewed in colors).
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Our main contribution is improving the image representation
by first predicting its semantic concepts and then organizing
them in a correct semantic order. This is accomplished by
multi-regional multi-label CNN, context-modulated atten-
tional LSTM, and joint matching and generation learning,
respectively. We have systematically studied the impact of
these modules on the performance of image and sentence
matching, and demonstrated the effectiveness of our model
by achieving significant performance improvements. In the
future, we will consider to generalize our model to the task of
cross video-sentence learning, by learning semantic concepts
and order for videos.
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