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Unconstrained Multimodal Multi-Label Learning
Yan Huang, Wei Wang, and Liang Wang, Senior Member, IEEE

Abstract—Multimodal learning has been mostly studied by
assuming that multiple label assignments are independent of
each other and all the modalities are available. In this
paper, we consider a more general problem where the labels
contain dependency relationships and some modalities are
likely to be missing. To this end, we propose a multi-label
conditional restricted Boltzmann machine (ML-CRBM),
which handles modality completion, fusion, and multi-label
prediction in a unified framework. The proposed model is able to
generate missing modalities based on observed ones, by explicitly
modelling and sampling their conditional distributions. After that,
it can discriminatively fuse multiple modalities to obtain shared
representations under the supervision of class labels. To consider
the co-occurrence of the labels, the proposed model formulates the
multi-label prediction as a max-margin-based multi-task learning
problem. Model parameters can be jointly learned by seeking a
balance between being generative for modality generation and
being discriminative for label prediction. We perform a series of
experiments in terms of classification, visualization, and retrieval,
and the experimental results clearly demonstrate the effectiveness
of our method.

Index Terms—Multi-label learning, multi-task learning,
multimodal learning, restricted Boltzmann machine.

I. INTRODUCTION

I N REAL life, along with various ways of data acquisition, a
concept can be represented by multiple data modalities. For

example, image contents can be represented by either images
themselves or their associated tags. In social network, identities
are characterized by various attributes (modalities) such as age,
gender and personal photo. Compared to single data modality,
multiple modalities provide complementary representations of
the same concept, which can greatly facilitate pattern recogni-

Manuscript received March 14, 2015; revised June 26, 2015; accepted Au-
gust 15, 2015. Date of publication September 03, 2015; date of current version
October 20, 2015. This work was supported by the National Natural Science
Foundation of China under Grant 61175003, Grant 61202328, Grant 61572504,
and Grant 61420106015, and by the National Basic Research Program of China
under Grant 2012CB316300. The guest editor coordinating the review of this
manuscript and approving it for publication was Dr. Guo-Jun Qi.
Y. Huang and W. Wang are with the Center for Research on Intelligent Per-

ception and Computing (CRIPAC), National Laboratory of Pattern Recognition
(NLPR), Institute of Automation, Chinese Academy of Sciences (CASIA), Bei-
jing 100190, China (e-mail: yhuang@nlpr.ia.ac.cn; wangwei@nlpr.ia.ac.cn).
L. Wang is with the Center for Research on Intelligent Perception and Com-

puting (CRIPAC), National Laboratory of Pattern Recognition (NLPR), Insti-
tute of Automation, Chinese Academy of Sciences (CASIA), Beijing 100190,
China, and also with the CAS Center for Excellence in Brain Science and In-
telligence Technology, Institute of Automation, CASIA, Beijing 100190, China
(e-mail: wangliang@nlpr.ia.ac.cn).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TMM.2015.2476658

tion tasks such as classification and retrieval. To take advan-
tage of this, various multimodal learning methods have recently
been proposed, e.g., multiple feature concatenation [15], mul-
tiple kernel learning [6], multi-viewMarkov network [4], multi-
modal metric learning [47], multimodal deep autoencoder [24],
multimodal deep Boltzmann machine [37] and transfer learning
with tree-based priors [38].
To simplify the multimodal learning problem, existing

methods usually assume that all the modalities to be analyzed
are available. But such an assumption is not always practical
since there often exist missing modalities in real world. For
example, it is very easy to collect images, while obtaining their
associated tags is difficult which requires a great deal of human
labor. Several recent methods (e.g., [24]) have made attempts
to generate the missing modalities. However, their models
are especially designed to explain the complete multimodal
data, rather than generate missing modalities. The generation
scheme is not explicitly incorporated into their learning ob-
jectives. Accordingly, the classification performance drops
dramatically when comparing with the common case that all
the modalities are available. Some other methods (e.g., [6])
formulate the generation goal into their learning objectives for
explicit optimization, but they only focus on solving a limited
tag-generation case in a classification manner. In fact, such a
classification strategy cannot be directly extended to handle
more general cases since the missing modalities cannot be
always regarded as class labels.
In addition to the constrained assumption about modalities,

most multimodal learning methods assume that multiple class
labels of multimodal data are independently of each other,
which completely ignores the dependency relationships of
labels. In fact, class labels usually have co-occurrence rela-
tionships. Taking bimodal data (image and tag) classification
as an example, some highly correlated label pairs such as Sky
and Cloud, are more likely to be assigned to one same image.
Without considering such label co-occurrence, a model would
assign the label Sky together with some irrelevant labels such
as Fish. Unfortunately, existing methods (e.g., [24] and [37])
usually treat the multimodal multi-label learning problem
as multiple independent single-label assignments by using a
one-vs-all logistic classifier for each assignment, which fails
to model the label co-occurrence. Moreover, under the label
independence assumption, some labels with fewer training
samples can not be adequately modelled, since they cannot
potentially leverage knowledge from their relevant labels, e.g.,
learning shared features [38].
In this paper, we aim to deal with the problem of uncon-

strained multimodal multi-label learning when some modali-
ties are missing or incomplete, and the labels are not neces-
sarily independent of each other. To this end, we propose a
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Multi-Label Conditional Restricted Boltzmann Machine (ML-
CRBM) which can jointly deal with modality completion, fu-
sion and multi-label prediction. To generate the missing modal-
ities, ML-CRBM models the conditional distribution over the
missing modalities given observed ones, and then samples the
missingmodalities with a Gibbs sampler. Then,ML-CRBMdis-
criminatively fuses all the modalities to obtain shared represen-
tations under the supervision of class labels. To further model
the label co-occurrence, it handles the multi-label assignment as
a multi-task learning problem where multiple labels are utilized
for co-supervision.
The proposed model is learned by optimizing the objec-

tives of both modality generation and multi-label prediction,
where intractable inferences can be efficiently approximated
by variational methods. We perform a series of experiments
including unconstrained multimodal multi-label classification
and retrieval, and label co-occurrence visualization on two
publicly available datasets. The experimental results show that
our method outperforms the state-of-the-art methods.
Our contributions can be summarized as follows.
1) We study a rarely investigated but practically important

problem, namely unconstrained multimodal multi-label
learning, and propose a new RBM-style model which can
jointly handle incomplete modalities, data fusion and label
relationships.

2) To the best of our knowledge, it is the first work that ap-
plies the idea of conditional Restricted Boltzmann Ma-
chine (RBM) in the context of multimodal learning, and
demonstrates the validity for modality generation.

3) We find that the proposed multi-task encoding is effective
for modelling label co-occurrence, and can significantly
improve the classification performance.

4) Different from the existing unsupervised learning of con-
ditional RBMs, we explore two efficient algorithms for su-
pervised learning.

The rest of the paper is organized as follows. In Section II,
we briefly review related work. In Section III, we detail the pro-
posed model. In Section IV, we apply the proposed model to un-
constrained multimodal multi-label classification and retrieval.
Finally, we conclude the paper in Section V.

II. RELATED WORK

Multimodal data analysis has been widely studied in the re-
cent literature. By concatenating image and their associated tag
features as inputs to Support Vector Machines (SVM), Huiskes
et al. [15] significantly improve image classification. Using
such feature concatenation strategy ignores the incompatibility
of heterogeneous multimodal data, some other methods project
multiple modalities into a shared latent space and perform
multimodal tasks in this space. Guillaumin et al. [6] train a
multiple kernel learning based classifier to score unlabeled
images, and then predict labels with both images and tags.
Xing et al. [48] present a variant of undirected graphical model,
known as the multi-wing harmonium, for fusing image and
text modalities. Xie and Xing [47] project multiple modalities
into a shared latent space by preserving the relationships of
similar and dissimilar pairs between modalities. Nguyen et
al. [25] propose multimodal multi-instance multi-label latent

Dirichlet allocation for image annotation. In addition to these
shared latent space learning methods, Qi et al. [28] propose
a novel multimodal transfer learning framework for image
classification, which can effectively transfer semantics from
texts to images via cross-domain label propagation.
Since the resurgence of deep neural network in 2006, several

deep models have been proposed for multimodal learning. By
connecting all the multimodal inputs to a shared hidden layer,
Ngiam et al. [24] extend a multimodal version of deep autoen-
coder [10] to fuse audio and video modalities for further clas-
sification and retrieval tasks. Wang et al. [45] exploit stacked
autoencoders as nonlinear mapping functions to project hetero-
geneous features into a common latent space, which can cap-
ture both intra-modal and inter-modal semantic relationships
for multimodal retrieval. Srivastava and Salakhutdinov [36],
[37] propose multimodal deep belief nets and multimodal deep
Boltzmann machines which serve as generative models to well
explain multimodal inputs.
The above methods make a rigid assumption that all the data

modalities are available. However, in practical applications,
some modalities are often missing or incomplete. Srivastava
and Salakhutdinov [37] make attempts to perform experiments
with missing modalities, but the aim of their model is to encode
the complete multimodal inputs but not generate the missing
modalities. To effectively infer the missing modalities, Sohn et
al. [34] train a multimodal deep recurrent neural network by
minimizing the variation of information of all the modalities.
Different from these models, our method takes advantage of
the homogeneity of multimodal data, and generates the missing
modalities from the observed ones by explicitly optimizing
their conditional distributions.
Multimodal data usually belong to multiple classes, which

makes multimodal learning become the problem of multimodal
multi-label learning. Since the topics covered in the multi-label
learning literature are numerous, readers may refer to [52] for a
comprehensive introduction. We will next focus on reviewing
some works that handle multi-label learning based on deep
learning models. To directly apply deep neural network to
multi-label learning, Zhang and Zhou [51] propose a novel
neural network architecture which aims to minimize pairwise
ranking error of multiple assigned labels. From the prospective
of multi-task learning, Huang et al. [13] develop a multi-task
deep neural network which decomposes the multi-label assign-
ment problem into multiple tasks, each of which is a binary
classification. Kiros and Szepesvari [16] take advantage of con-
volutional neural network [17] to learn feature representations
for images, and then exploit existing TagProp [44] for image
annotation.
In the context of multimodal learning, most methods usu-

ally handle the multimodal multi-label learning problem in a
multi-class learning way, i.e., assigning multiple labels to mul-
timodal data independently, which completely ignores potential
relationships among labels. To deal with this issue, Srivastava
and Salakhutdinov [38] formulate the label hierarchical rela-
tionship as a tree hierarchy, and then transfer knowledge be-
tween class labels for improving classification. Xu et al. [49]
model the label correlation as a semi-supervised label diffu-
sion process on a unified bi-relational graph, and utilize multiple
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Fig. 1. Pipeline of unconstrained multimodal multi-label learning. Given incomplete multimodal data (e.g., bimodal image and tag), during training, we first
extract features for images and then use them to generate missing tag features. All the features are discriminatively fused into shared representations by using
co-occurred labels as supervision. During testing, given only images, the model can generate the corresponding missing tag features, and then obtain the shared
representations to perform the classification and retrieval tasks.

data modalities for image classification. Qi et al. [29] propose
a correlative multi-label framework to simultaneously classify
video concepts and model their correlations. By considering
the multi-level semantic relationship among category labels,
Hua et al. [11] perform cross-modal correlation learning using
adaptive hierarchical semantic aggregation. Qi et al. [30] ex-
ploit a two-dimensional multi-label active learning algorithm
for image annotation, where only partial selected samples need
to be labeled and the remaining samples can be inferred using
learned label correlations. Our method proposes an alternative
to automatically learn the label co-occurrence with a multi-task
learning framework, in which multiple labels are jointly utilized
to co-supervise the discriminative fusion of multimodal data.
Our model is also related to RBM [33] based methods, es-

pecially Conditional RBM [40] and Classification RBM [18].
Sutskever and Hinton propose a Conditional RBM for sequence
modelling, where the historical visible variables are treated as
dynamically changing biases for current variables by directed
connections. Such a conditional scheme is further applied to
human motion analysis [42], motion style modelling [43] and
collaborative filtering [31]. To the best of our knowledge, it has
not yet been investigated in the context of multimodal learning,
and our method is the first work that demonstrates its usefulness
for missing modality generation. Classification RBM is pro-
posed by Larochelle and Bengio, which aims to extend common
RBM as a non-linear classifier for supervised learning, espe-
cially multi-class learning. The model can also be regarded a
special case of Conditional RBM by replacing a set of visible
variables with class label variables. But different from it, our
method proposes a multi-task encoding for class labels and fo-
cuses on multi-label learning on multimodal data.

III. UNCONSTRAINED MULTIMODAL MULTI-LABEL LEARNING

In contrast to the existing multimodal learning which mainly
focuses on modality fusion, unconstrained multimodal multi-

label learning further considers other two challenges: missing
modalities and label dependency. As shown in Fig 1, we take
the bimodal data (e.g., image and tag) for illustration, and as-
sume that the tag modality is incomplete. During training, we
first extract features for observed modalities (e.g., image), and
then generate features for missing modalities (e.g., tag) from
the observed ones. After modality generation, all the features
are fused to obtain shared representations. It should be noted
that the fusion procedure is under the supervision of class labels
where the label co-occurrence is particularly considered. During
testing, given only the observed modalities (e.g., image), the
learned model will generate the missing modalities, and then
obtain shared representations which can be used for the sub-
sequent classification and retrieval tasks. In the next, we will
give a detailed introduction on using Multi-Label Conditional
Restricted Boltzmann Machine (ML-CRBM) for unconstrained
multimodal multi-label learning. Before that, we will briefly re-
view RBM, which is the foundation of ML-CRBM.

A. Multimodal Restricted Boltzmann Machine
Due to the power of representation learning [2], [1], RBM

has been successfully applied to various tasks [10], [42], [9],
[20], [8], especially multimodal learning [24], [36], [37].
Fig. 2(a) illustrates a multimodal RBM, where visible variables

and denote images and associated
tags, respectively, and hidden variables denote
fused representations. Each visible variable is connected to
each hidden variable, and no internal connection exists within
layers. RBM has been widely used to model the distribution
over binary-valued data, while Gaussian RBM [46] and Repli-
cated Softmax Model [9] can be used to handle integer-valued
and real-valued inputs, respectively. The energy function of
RBM is defined as follows:

(1)
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Fig. 2. Multimodal RBM, multimodal conditional RBM, and multi-label conditional restricted Boltzmann machine (ML-CRBM). Note that the ML-CRBM is
actually a hybrid graph containing both undirected and directed connections. For modality generation, we regard the visible variables as an additional fixed
input and model dependency relationships across modalities by the directed connections. (a) Multimodal RBM. (b) Multimodal conditional RBM. (c) ML-CRBM.

where , and are biases corresponding to , and , re-
spectively, and and are the network weights. Based
on the energy function, the distribution can be obtained
by marginalizing the joint distribution over all the variables

(2)

where is the partition function.
To learn the network weights, for each pair of image and tag

, we can minimize the negative log-likelihood via
gradient descent

(3)

The gradient of the objective function with respect to
can be computed as follows:

(4)

where and
denote two expectations with respect to the data distribution
and the model distribution, respectively. Since the model ex-
pectation is intractable, we use Contrastive Divergence [7] for
an efficient approximation.

B. Multimodal Conditional Restricted Boltzmann Machine
Note that the underlying assumption of multimodal RBM is

that all the modalities need to be available, i.e., without missing
or incomplete modalities. Such limited assumption is not very
practical in real applications since themultimodal data is usually
incomplete. Even though we can alternatively use zero-valued
vectors to replace themissingmodalities for fusion, this will sig-
nificantly degenerate the shared representations and thus drop
the classification performance [37].
Although different modalities exhibit various modality-spe-

cific properties, they intrinsically represent the same concept.
An intuitive idea is that we can generate the missing modali-
ties from observed ones by taking advantage of this homoge-
neous property. As shown in Fig 2(b), we apply such idea to a
Conditional RBM, where we assume that the tag modality ( )
is missing while the image modality ( ) is observed. Pairwise

layers of variables, - , - and - are fully-connected by
weights , and , respectively. Note that the di-
rected connections aim to model the dependency relationships
across modalities. In particular, we regard the modality as
an additional fixed input or a dynamically changing bias for the
tag-specific RBM (consisting of layers and ). Learning pro-
ceeds by optimizing the negative conditional log-likelihood via
gradient descent

(5)

for each training data . When the number of
modalities is more than two, we can use a more general form

(6)

where and denote two
sets of missing and observed modalities, respectively.
After modality generation, we are able to fuse the complete

multimodal data in a similar way as RBM. In fact, the data fu-
sion can be carried out simultaneously with modality generation
by optimizing the following objective function:

(7)

where is a tuning parameter for balancing two goals. Note
that the two goals are not mutually exclusive, since they both
seek modality-free representations in the hidden variables . In
detail, for fusion, with the aim to well explain the multimodal
inputs, is forced to ignore modality-specific properties and
encode modality-free ones. While for generation, serves as
a transitional state between observed and missing modalities,
which mainly captures modality-free characteristics.

C. Multi-Label Conditional Restricted Boltzmann Machine
The Conditional RBM described in Section III-B is an un-

supervised learning model, i.e., without using any class label.
When dealing with discriminative tasks such as classification,
it has to exploit a two-phase learning procedure [24], [36], [37]:
1) fusing multiple modalities to obtain shared representations,
and 2) feeding the representations to a prediction classifier.
However, such two-phase learning scheme could make the
fused representations sub-optimal for label prediction, since
the model mainly seeks to improve the generative power rather
than discriminative capability in the first phase.
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To directly uncover the discriminative properties in the fused
representations, we propose a Multi-Label Conditional Re-
stricted Boltzmann Machine (ML-CRBM) which incorporates
the supervised information into fusion, and performs modality
fusion and label prediction in a one-phase learning procedure.
In detail, it fuses multiple modalities under the supervision of
class labels, and models the label co-occurrence by a multi-task
encoding.
As shown in Fig 2(c), the proposed model consists of

layers: an image layer , a tag layer , a shared hidden layer
and output layers ), where is the

number of class labels . To consider the label depen-
dency, instead of performing each single-label assignment sep-
arately, the model regards the multi-label assignment as mul-
tiple binary classification tasks, and jointly handles them in a
multi-task learning framework. As a result, it can simultane-
ously use multiple co-occurred labels for supervision. In partic-
ular, each binary classification task is associated with an output
layer. For the th task, the two variables in the corre-
sponding output layer indicate whether the input multimodal
data belong to the label or not

if
if

where the layer uses one-hot encoding [19]. Pairwise adja-
cent layers - , - , - and - are fully-connected with
network parameters , , and , respec-
tively.
Given the above notations, we define the energy function of

ML-CRBM as

(8)

where all the bias terms are omitted for simplicity. Furthermore,
we can obtain the joint distribution

(9)

where is the partition function.

D. Inference and Learning

Inheriting the conditionally independent property fromRBM,
and factor over the variables, and their

inferences are

(10)

(11)

Note that each pairwise variables in a class label layer
denote the -label assignment, by regarding each pairwise

variables as a group, factors over groups. For each
group, we can perform inference as

(12)

(13)

where .
To learn the model parameters

, for each training instance
, we jointly optimize the two goals in

terms of label prediction and modality generation. For the
label prediction, a general way is to optimize the negative
log-likelihood (NLL) term . It can be
decomposed as follows:

which indicates that the NLL term pays partial attention to
model the marginal distribution to explain the mul-
timodal inputs. But in supervised learning settings, we only
care about learning discriminative shared representations and
achieving accurate multi-label predictions. The conditional
term is more discriminative than the NLL
term, so we replace the NLL term with . For
the modality generation, we use the corresponding objective
function in (5).
Combining the above two goals, we formulate our learning

objective as follows:

(14)

where the two terms are associated to label predication and
modality completion, respectively, and is a tuning parameter
for balance. In our experiments, we achieve the best perfor-
mance when .
Stochastic gradient descent is adopted to optimize the objec-

tive function , and the gradient of with respect to
is

(15)

where the first and third terms are data-dependent expectations,
the second and fourth terms are model-dependent expecta-
tions. Considering that exact minimum objective learning
is intractable, we perform efficient approximated learning
where a MCMC based procedure [7] is utilized to estimate the
model-dependent expectations. As summarized in Algorithm
1, the model can be learned by alternatively performing 1-step
Gibbs sampling from the tractable inferences, e.g.,
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and , and updating the model parameters to min-
imize the objective.

Algorithm 1 Learning for the ML-CRBM

Input: training data , learning rate
Parameters:
Notation: : setting as value

: sampling from
// M update iterations
for to M
// Positive phase

, , ,

// Negative phase
, ,
, ,

,
// Update
for do

end for
end for

Max-Margin Learning: The objective in (14) utilizes the neg-
ative log-likelihood estimation for supervised learning, where
the normalization factor of the conditional distribution could
make the inference very difficult. Furthermore, for the -label
assignment, from a discriminative aspect, the optimal predic-
tions are

where and represent the probabilities of
whether the inputs and belong to the class or not.
To eliminate the normalization factor and guarantee the sepa-

rability of the positive and negative cases, it is better to enlarge
the distance between and . By
taking advantage of the max-margin principle, we obtain a more
discriminative objective as follows:

(16)

where is 1 for and for , and is the
margin. Note that in the context of deep learning, hinge loss is
also exploited by convolutional neural networks for multi-class
classification [41], and by RBM for object segmentation [50].

E. Making Predictions

During testing, to generate missing modalities and predict la-
bels, we are particularly interested in estimating and

. However, since both and have exponential num-
bers of possible configurations, exact inferences are intractable.
We exploit two factorial distributions and

to approximate the true distributions and ,
respectively

(17)

where , , , and are variational parameters which
estimate , , ,

and , respectively. Note that
is a structured factorial distribution. In particular, since

the two variables in the denote the class label, we
treat their estimations as a single group, and factorize

into the product of a series of group distributions.
Minimizing the two Kullback-Leibler (KL) divergences

and , we
obtain the following mean-field fixed-point equations:

(18)

(19)

where is the sigmoid function. Note that we use two dif-
ferent message-passing procedures corresponding to (18) and
(19), respectively. Both approximated inferences are performed
by iterating the fixed-point equations until convergence. In our
experiments, we observe that 20 iterations are sufficient. In fact,
using a joint message-passing procedure for these two approxi-
mations is feasible but very difficult, since we need to first gen-
erate the missing modality, and then use it to perform label pre-
diction in two successive phases.

IV. EXPERIMENTS

To verify the effectiveness of the proposed method, we take
bimodal data as a case study, and perform classification and re-
trieval experiments on two publicly available datasets.

A. Datasets

MIR Flickr Dataset [14]: The dataset contains 1 million im-
ages retrieved from the photography website Flickr. 25,000 im-
ages have their associated tags and classes, each of which may
belong to multiple classes, 38 classes in total. The classes in-
clude object and scene concepts such as bird, flower, lake and
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Fig. 3. Deep multi-label conditional restricted Boltzmann machine.

night. Similar to the settings in [37], we use 3,857-dimensional
features1 to describe images, which consist of Pyramid His-
togram of Words (PHOW) [3], Gist [26] and MPEG-7 descrip-
tors [21]. The PHOW features are obtained by first extracting
dense SIFT features over multi-scale images and then clustering
them.We use 2,000-dimensional word count vectors to describe
the associated tags. Among the 25,000 images, 10,000/5,000/
10,000 are used as the training/validation/testing set. We ran-
domly split the training, validation and testing sets for 5 times
and compute their average performance as the final result.
NUS-WIDE Dataset [5]: The dataset contains 269,648 web

images and the associated tags, each of which could belong to
one or more cases of 81 classes. In our experiments, we use
a lite version as NUS-WIDE-LITE which consists of 55,615
images. Images are described by 634-dimensional features2
which consist of color histogram (LAB) [32], color auto-cor-
relogram (HSV) [12], edge direction histogram [27], wavelet
texture [22] and block-wise color moments (LAB) [39]. Tags
are represented by 1,001-dimensional word count vectors. We
follow the public protocol in [5], which uses 27,807 images for
training and 27,808 images for testing.

B. Experimental Settings
Different modalities have various modality-specific proper-

ties, which will have a great impact on the quality of data fusion.
To reduce such impact, we combine Gaussian RBM (GRBM)
[46], Replicated Softmax Model (RSM) [9], standard RBM and
the proposed ML-CRBM together as a deep model, as shown
in Fig 3. The model first learns less modality-specific represen-
tations for image and tag, and then performs modality-free fu-
sion based on the learned representations. The deep model can
be learned in a similar way as DBN [8], by separately training
all the RBM variants from the bottom up. The architecture of
the deep model (e.g., the number of layers, and the number of
variables in each layer) on the MIR Flickr and the NUS-WIDE
datasets is shown in Table I. Note that we simply exploit a
similar model architecture as [37] rather than vastly tune it,
because such deep models are found to be insensitive to the
choice of these hyperparameters [36]. In our experiments, we

1[Online]. Available: http://www.cs.toronto.edu/nitish/multimodal/index.
html

2[Online]. Available: http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm

TABLE I
MODEL ARCHITECTURE ON THE TWO DATASETS

TABLE II
AVERAGE PRECISIONS FOR MULTIMODAL MULTI-LABEL

CLASSIFICATION ON THE MIR FLICKR DATASET

tune the learning rate from - to - , and empirically find that
using a small learning rate ( - ) for and a large learning
rate ( - ) for the rest of parameters can lead to the satisfying
performance.
We study four variants of ML-CRBM: 1) ML-CRBM-dis

and 2) ML-CRBM-mar utilize two different learning objectives
corresponding to (14) and (16), respectively. In contrast to
ML-CRBM-dis, 3) ML-CRBM-zero does not generate the
missing tag inputs but keeps them clamped at zero. Based on
ML-CRBM-mar, 4) ML-CRBM-drop employs the popular
Dropout [35] to reduce the over-fitting.

C. Multimodal Multi-Label Classification
Although our method is designed for unconstrained mul-

timodal multi-label learning, it can be applied to the general
multimodal multi-label classification. We compare the pro-
posed ML-CRBM with several baseline and state-of-the-art
methods, including SVM [15], LDA [15], multimodal Deep
AutoEncoder (DAE) [24], multimodal Deep Belief Net (DBN)
[36], multimodal Deep Boltzmann Machine (DBM) [37], Mul-
tiple Kernel Learning (MKL) [6], TagP [44] and Classification
RBM (CRBM) [19]. It should be noted that we implement a
multi-label conditional version of CRBM, by using a multi-hot
encoding for class labels. Due to the multi-label setting, we
compute the Average Precision (AP) for each single-label
assignment, and average over all the APs to obtain the Mean
Average Precision (MAP) as the evaluation criterion. For the
experiments on the MIR Flickr dataset, similar to [37], we
use the unlabeled 975,000 images to pretrain all the deep
models, which aims to provide a better initialization for model
parameters.
The results of the compared methods on the MIR Flickr

dataset (in Table II) come from already published papers [37],
[6], [44], while the results on the NUS-WIDE dataset (in
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TABLE III
MEAN AVERAGE PRECISIONS FOR MULTIMODAL MULTI-LABEL

CLASSIFICATION ON THE NUS-WIDE DATASET

TABLE IV
AVERAGE PRECISIONS FOR UNCONSTRAINED MULTIMODAL MULTI-LABEL

CLASSIFICATION ON THE MIR FLICKR DATASET

Table III) are from our own re-implementations. Note that for
all the methods, we report their best performance after param-
eter tunings. Due to the space limitation, we do not present
class-wise APs but only MAPs on the NUS-WIDE dataset.
From the two tables we can see that, all the ML-CRBM variants
consistently perform better than the compared deep models
including DAE, DBN and DBM. In particular, ML-CRBM-dis
greatly outperforms CRBM by 0.055 on the MIR Flickr dataset,
which indicates that the multi-task encoding for class labels
is more effective than multi-hot encoding. Compared with
ML-CRBM-dis, the max-margin principle aidsML-CRBM-mar
to learn more discriminative fused representations, which
results in the improvements by 0.037 and 0.011 on the two
datasets, respectively. By randomly dropping a subset of vari-
ables in the shared hidden layer, ML-CRBM-drop alleviates
the over-fitting problem and further improves the accuracies
by 0.013 and 0.012 on the two datasets, respectively. Both
ML-CRBM-mar (0.655) and ML-CRBM-drop (0.668) perform
better than the state-of-the-arts including MKL (0.623), TagP
(0.640) and tree priors based DBM (0.651) [38] on the MIR
Flickr dataset.

D. Unconstrained Multimodal Multi-Label Classification
Wewill next perform the experiments of unconstrainedmulti-

modal multi-label classification. In our experiments, we assume
that the tag modality is missing. For the multimodal methods,
such as DBN and DBM, we sample the missing tag features
from the conditional distribution with a Gibbs sampler [37]. For
the proposed ML-CRBM, we perform the mean-field updates in
(18) to get the estimations , and then perform sampling to
generate tag features.
We compute MAPs of all the methods in Tables IV and

V. The prefix “Image” denotes unimodal methods including
Image SVM, Image DBN, and Image DBM, which do not
use multimodal data but only images for learning. So they

TABLE V
MEAN AVERAGE PRECISIONS FOR UNCONSTRAINED MULTIMODAL
MULTI-LABEL CLASSIFICATION ON THE NUS-WIDE DATASET

perform much worse than other multimodal methods. The
suffix “-zero” denotes multimodal methods which do not
generate missing tags but keep them clamped at zero. Similar
to the previous observations, the max-margin principle and
the Dropout strategy can largely improve the performance
of ML-CRBM-mar and ML-CRBM-drop, respectively. But
without generating the missing tags, ML-CRBM-zero performs
much worse than ML-CRBM-dis by 0.022 and 0.037 on the
two datasets, respectively, which shows that the generated tag
features byML-CRBM-dis are very useful for classification. By
comparing ML-CRBM-zero with CRBM-zero, our multi-task
encoding once again surpasses multi-hot encoding by 0.075 on
the MIR Flickr dataset. It should be noted that, even though
our method performs slightly worse than multimodal Deep Re-
current Neural Networks [34] (0.661 vs. 0.686) for multimodal
multi-label classification in Section IV-C, ML-CRBM-drop can
achieve better results (0.611 vs. 0.607) under the unconstrained
setting due to the particularly designed model architecture for
modality generation.
As shown in Fig 4, we draw class-wise improvement curves

[37] of some comparison methods over SVM on both two
datasets. Note that without particular statements, we abbreviate
ML-CRBM-drop as ML-CRBM in the following. From the fig-
ures we can observe that several class-wise APs by ML-CRBM
are greatly improved. Specifically, on the MIR Flickr dataset,
due to the fewer training samples, some classes have very
low APs by SVM such as (0.088), (0.102) and

(0.126), as shown in Table IV. By modelling the label
co-occurrence with the proposed ML-CRBM, these classes are
able to transfer knowledge from their frequently co-occurred
classes, which leads to the great improvements by 0.446, 0.431
and 0.409, respectively, as illustrated in Fig. 4(a). Similarly, we
can find from Tables II and IV that, by slightly sacrificing some
higher APs as a trade-off, our method can significantly promote
the APs of some classes which have fewer training samples.
Previous experiments are all performed by assuming that the

tag modality is fully missing. Noticing that the tag modality
may be partially instead of fully missing in some real-world sce-
narios, so we study the performance of the compared methods
given partially missing tag modality on the MIR Flickr dataset.
In particular, we vary the percentage of missing tag modality
from 100% to 0%, and separately perform the experiment of un-
constrained multi-label classification. All the MAPs by DBM
and the proposed ML-CRBM are illustrated in Table VI. As
we can see, the results of both two methods can be progres-
sively improved when reducing the percentage of missing tag.
ML-CRBM can outperform DBM given various percentages of
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Fig. 4. Class-wise improvement curves for unconstrained multimodal multi-label classification on the MIR Flickr and the NUS-WIDE datasets. (a) MIR Flickr.
(b) NUS-WIDE.

TABLE VI
MEAN AVERAGE PRECISIONS FOR UNCONSTRAINED MULTIMODAL
MULTI-LABEL CLASSIFICATION ON THE MIR FLICKR DATASET,

GIVEN VARYING PERCENTAGE OF MISSING TAG

missing tags, which demonstrates its effectiveness on modality
generation.

E. Label Co-occurrence Visualization
To further verify the effectiveness of modelling the label

co-occurrence by ML-CRBM, we visualize the incorrect label
co-occurrence matrix which measures the prediction error of
pairwise labels. The co-occurrence matrix
has the size of , where is the number of labels. Each
element is the number of incorrect pairwise assignments
(labels and ), the larger the worse. We compute the incor-
rect label co-occurrence matrices for the three representative
methods: SVM, DBM and ML-CRBM.
The matrix visualizations on the two datasets are illustrated

in Figs. 5 and 6, where the redder the color is, the larger the
value is. Since each matrix is symmetric, we only present the
values in the upper triangular for simplicity. In both Figs, we can
observe that the co-occurrence matrices of the ML-CRBM are
much more sparse than those of SVM and DBM, which clearly
shows that ML-CRBM can make fewer mistakes on the predic-
tion of the label co-occurrence.
In fact, when handling each single-label assignment, SVM

and DBM do not consider the relationships of labels, so they
make a great number of incorrect predictions of hardly corre-
lated pairwise labels, e.g., Car-Indoor. On the other hand, be-
cause the prediction error of each single-label assignment is
high, after independent combination among these incorrect as-
signed labels, the models make many false positive assignments
such as Indoor-People, Plant-Tree and Female-Portrait. How-
ever, by regarding the label co-occurrence as high-order rela-

Fig. 5. Visualization of incorrect label co-occurrence matrices on the MIR
Flickr dataset. (a) SVM. (b) DBM. (c) ML-CRBM.

Fig. 6. Visualization of incorrect label co-occurrence matrices on the NUS-
WIDE dataset. (a) SVM. (b) DBM. (c) ML-CRBM.

Fig. 7. Visualization of incorrect label co-occurrence cubes on the MIR Flickr
dataset. (a) SVM. (b) DBM. (c) ML-CRBM.

tionship constraints, ML-CRBM considerably suppresses those
prediction errors. Note that the matrix visualization only mea-
sures the second-order co-occurrence, while for the three-order
case, we can obtain the similar observations by visualizing the
co-occurrence cubes in Fig 7.

F. Multimodal Multi-Label Retrieval
To demonstrate the discriminative power of the fused repre-

sentations, we perform experiments of multimodal multi-label
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Fig. 8. Precision-recall curves for (unconstrained) multimodal multi-label retrieval on the MIR Flickr dataset. (a) Multimodal multi-label retrieval. (b) Uncon-
strained multimodal multi-label retrieval.

Fig. 9. Results of unconstrained multimodal multi-label retrieval (image query) by ML-CRBM.

retrieval on the MIR Flickr dataset. We randomly select 1000/
5000 pairs of image and tag as the query/target set from the
testing set. Given a query pair of image and tag, we compare
it with each target by computing the cosine distance between
the fused representations, and then sort relevant terms by the
distances. Since each pair of image and tag could belong to mul-
tiple classes, similar to [36], we regard a query and a target as
relevant if their class labels are overlapped.
We compare the ML-CRBM with DBN, DBM, a widely

recognized multimodal retrieval method namely Multi-Modal
Neural Networks (MMNN) [23] and a baseline method (Raw
Features) which uses the concatenation of raw image and tag
features as fused representations. The precision-recall curves
of all the methods are illustrated in Fig. 8(a), from which we
can see that, ML-CRBM clearly outperforms other methods,
which demonstrates that our learned fused representations are
much more discriminative. In particular, when the recall is low,
our model is able to achieve much higher precision.

G. Unconstrained Multimodal Multi-Label Retrieval

We also apply our model to the problem of unconstrained
multimodal multi-label retrieval. The only difference from the
standard multimodal retrieval is that the query set contains only

images but without tags. Now the goal is to use image to retrieve
pairs of image and tag.
We compare the proposed ML-CRBM with four methods in-

cluding DBN, DBM, Image DBN and Image Raw Features.
Similar to Section IV-D, the unimodal methods (Image DBN
and Image Raw Features) utilize only image features while the
multimodal methods (DBN, DBM and ML-CRBM) can gen-
erate the missing tags before modality fusion.
The precision-recall curves are shown in Fig. 8(b). We can

see that all the multimodal methods consistently outperform
the unimodal methods. By optimizing an explicit objective for
modality generation, ML-CRBM achieves much better perfor-
mance than the two deep learning methods DBN and DBM.
We also present several retrieval examples by ML-CRBM in
Fig. 9 (or Fig. 10), where each row presents an image (or a
tag) query and its top 7 retrieved results. We can see that, even
though given only images (or tags), the model is able to accu-
rately find similar images and tags.

H. Discussion
In the following, we will qualitatively compare the proposed

multi-task encoding for class labels with three other encodings,
including one-hot [18], one-vs-all [37] and multi-hot [19].
One-hot encoding is shown in Fig. 11(a), where and are two
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Fig. 10. Results of unconstrained multimodal multi-label retrieval (tag query) by ML-CRBM.

Fig. 11. Comparison of four encoding methods for class labels. (a) One-hot. (b) One-versus-all. (c) Multi-hot. (d) Multi-task.

sets of variables representing fused representations and class
labels, respectively. The encoding is often used in multi-class
learning, where a single label is assigned by activating the
corresponding variable in as 1. When performing multi-label
learning, i.e., assigning more than one label, a common way is
to transform the problem to multiple single-label assignments
in a one-vs-all manner [37], i.e., splitting positive and negative
samples for each label, and separately performing multiple
binary classifications with logistic regressions. As illustrated
in Fig. 11(b), each label layer contains only one logistic
variable representing the probability of the positive case. The
dotted lines indicate that the multiple binary classifications are
independently implemented, so such one-vs-all encoding can
not model dependency relationships of labels [49], [38]. To
consider the label relationships, it is straightforward to directly
extend the one-hot encoding to a multi-hot version as shown
in Fig. 11(c), where multiple variables can be simultaneously
activated as 1. Multi-hot encoding can also be regarded as a
synchronized version of the one-vs-all encoding.
Compared with the multi-hot encoding, our proposed multi-

task encoding handles each single-label assignment with a bi-
nary softmax regression rather than the logistic regression. As
shown in Fig. 11(d), it uses two variables for each single-label
assignment corresponding to the positive case and the negative
case, respectively. For common binary classification, softmax
regression is equivalent to logistic regression, but different from
that, our case here contains multiple binary classifications. And
more importantly, the regression here is not independently linear
but in conjunction with the nonlinear data fusion. By using addi-
tional variables to model the negative case, multi-task encoding
enables the model to perform negative regulation to suppress the

incorrect prediction. Accordingly, multi-task encoding achieves
much better performance than multi-hot encoding as shown in
Section IV-C and Section IV-D.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed the Multi-Label Conditional
Restricted Boltzmann Machine to handle the problem of uncon-
strained multimodal multi-label learning. By jointly modelling
the conditional distribution over missing modalities and con-
sidering label co-occurrence as a multi-task learning problem,
the proposed model can handle modality completion, fusion and
multi-label prediction in a unified framework. The experimental
results of unconstrained multimodal multi-label classification,
retrieval and visualization have demonstrated the effectiveness
of our model. In the future, we will validate our model on other
multimodal data where more than one modalities are missing.
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