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Abstract—Recent studies of video action recognition can be
classified into two categories: the appearance-based methods
and the pose-based methods. The appearance-based methods
generally cannot model temporal dynamics of large motion well
by virtue of optical flow estimation, while the pose-based methods
ignore the visual context information such as typical scenes and
objects, which are also important cues for action understanding.
In this paper, we tackle these problems by proposing a Pose-
Appearance Relational Network (PARNet), which models the
correlation between human pose and image appearance, and
combines the benefits of these two modalities to improve the
robustness towards unconstrained real-world videos. There are
three network streams in our model, namely pose stream,
appearance stream and relation stream. For the pose stream,
a Temporal Multi-Pose RNN module is constructed to obtain the
dynamic representations through temporal modeling of 2D poses.
For the appearance stream, a Spatial Appearance CNN module
is employed to extract the global appearance representation of
the video sequence. For the relation stream, a Pose-Aware RNN
module is built to connect pose and appearance streams by
modelling action-sensitive visual context information. Through
jointly optimizing the three modules, PARNet achieves superior
performances compared with the state-of-the-arts on both the
pose-complete datasets (KTH, Penn-Action, UCF11) and the chal-
lenging pose-incomplete datasets (UCF101, HMDB51, JHMDB),
demonstrating its robustness towards complex environments
and noisy skeletons. Its effectiveness on NTU-RGBD dataset is
also validated even compared with 3D skeleton-based methods.
Furthermore, an appearance-enhanced PARNet equipped with
a RGB-based I3D stream is proposed, which outperforms the
Kinetics pre-trained competitors on UCF101 and HMDB51. The
better experimental results verify the potentials of our framework
by integrating various modules.

Index Terms—Action recognition, 2D pose-appearance, rela-
tional modelling, temporal attention LSTM.

I. INTRODUCTION

AS an important part of video understanding tasks, human
action recognition has been widely used in the applica-

tions like human-machine interaction, automatic surveillance,
video indexing and retrieval. It is challenging for the com-
plexity of the videos captured in real-life conditions. Apart
from the varying actions and environments, camera motion
and visual occlusion also increase the difficulty of recognition.
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A variety of works have been proposed in recent years.
Earlier methods like the Space-Time Interest Points [1] and
Dense Trajectories (DT, iDT) [2], [3] are based on handcrafted
features. Descriptors extracted from image and optical flow
are utilized to represent appearance and motion information.
However, these methods are computationally expensive and
limited in modelling complex actions. With the development
of deep learning in visual classification, more methods have
been proposed based on deep neural networks. Mainstream
deep methods for video action recognition can be divided into
appearance-based methods and pose-based methods.

Convolutional networks are commonly used in the
appearance-based methods, e.g., the architectures consisting of
2D CNNs [4], [5], 3D CNNs [6], [5], [7], and the combination
of CNNs and RNNs [8], [9], [10]. 2D CNN models mostly
work in a two-stream manner with video frames and optical
flow as spatial and temporal inputs. Although optical flow
brings significant improvements to model performance, it
can only represent the motion information between adjacent
frames, and lacks the ability to capture temporal relationships
of long-range actions [11], [12]. 3D CNNs can learn spatial
and temporal features simultaneously by 3D convolution ker-
nels. However, many 3D CNNs-based methods still need to
cooperate with optical flow to better exploit motion informa-
tion. There exists another method to employ RNNs to model
the temporal dynamics of spatial features extracted by CNN
module. However, the CNN features tend to represent global
appearance information rather than local temporal dynamics
within video frames, which limites the performance of these
CNN-RNN architectures.

The pose-based methods, on the contrary, can directly
capture motion information from human poses. The input pose
modalities of mainstream methods can be classified into the
pose skeletons [13], [64] and the mid-level estimated pose fea-
tures [14], [15], [16], [17], [18], [19]. 3D pose-based methods
achieve great success in the datasets under experimental con-
ditions [20]. However, it is impractical to capture reliable 3D
keypoints for videos in the wild, which limits the application
in real-world scenarios. Instead of using skeleton keypoints,
recent approaches choose to leverage mid-level pose features
extracted from specific pose estimators to build recognition
models. These methods act as pose encoders to perform spatial
or temporal enhancement on different pose modalities (i.e.,
featuremaps, joint heatmaps), and cooperate with CNN models
for feature learning and action classification. 2D poses, as
another product of the pose estimator, are easier to obtain and
more general than 3D poses and intermediate pose features.
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Since recent 2D pose estimators [21], [22] achieve excellent
performance in speed and accuracy, 2D pose-based methods
can be a proper choice for action recognition. However, body
joints occlusion and truncation existed in the unconstrained
real-world videos lead to great degradation to the recognition
performance. Therefore, how to model discriminative pose and
motion cues to form an explicit understanding of on-going
action, and ensure model robustness towards defective pose
skeletons and complex environments, is a problem worthy of
further investigation.

Motivated by the problems mentioned above, a Pose-
Appearance Relational Network (PARNet) is proposed for
robust action recognition based on 2D poses and video frames.
As shown in Figure 1, the overall architecture of PARNet
consists of a Temporal Multi-Pose (TMP) RNN Module, a
Spatial Appearance (SA) CNN Module, and a Pose-Aware
(PA) RNN Module. These three modules are respectively
built for the temporal modelling of 2D poses, the spatial
modeling of video frames, and the relational modeling of these
two modalities. Considering tremendous multi-person action
scenarios in real life, such as the confrontational or cooperative
sports (e.g., boxing and dancing), and the activities with
irrelevant people in the background (e.g., high-jump crowed
with audiences), attentional selection is applied on the multiple
poses detected by OpenPose [21]. Instead of individually pro-
cessing each person in the video [23], or directly aggregating
them together [15], our approach is able to simultaneously
attend to multiple informative targets while ignoring irrelevant
characters. Through the relational modelling of pose and
appearance features in the PA Module, the action-sensitive
appearance information is captured at each iteration step, and
the generated pose-aware representation can provide context
supplement to the dynamic representations of TMP Module.
Extensive experiments are conducted on the pose-complete
datasets (KTH, Penn Action and UCF11), the challenging
pose-incomplete datasets (UCF101, HMDB51 and JHMDB),
and the NTU-RGBD dataset with depth information. The
proposed PARNet achieves much better performances com-
pared with the state-of-the-arts and demonstrates its robustness
towards unconstrained real-world scenarios. When integrating
PARNet with the RGB stream of I3D model to compare with
the Kinetics pre-trained methods, the appearance-enhanced
PARNet still outperforms several competitors on UCF101 and
HMDB51, which further verifies the advantage of our method.

Our main contributions are summarized as follows:

• We introduce a robust action recognition architecture
which integrates both 2D pose and visual appearance
through a relational modeling strategy. The dynamic rep-
resentations from the TMP Module, the global appearance
representation from the SA Module, and the pose-aware
representation from the PA Module are combined to
generate a comprehensive representation for action recog-
nition, ensuring robust performances for unconstrained
indoor/outdoor videos.

• Attentional selections are performed iteratively to select
target persons in the TMP Module and action-sensitive in-
formation in the PA Module, i.e., the persons performing

action and the interactive scenes/objects, which improve
the performance as well as the interpretability of the
model.

• Different from previous studies which use LSTM for
modeling temporal dynamics in videos, we deploy a
memory enhanced Temporal Attention LSTM, which is
able to capture stronger contextual dependency for long-
term actions.

The source code will be released for future works1.

II. RELATED WORKS

In this section, we concentrate on the deep learning ap-
proaches for action recognition and categorize them into 1)
the appearance-based methods and 2) the pose-based methods.

A. Appearance-based Action Recognition

Visual appearance is widely used for action recognition
in videos with its intuitive and informative properties. Dif-
ferent from image classification, video classification needs
to capture both spatial and temporal information within the
frame sequence. TSN [4] is based on 2D CNN framework
which operates on the snippets sampled from several evenly-
segmented clips. It works in a two-stream manner, feeding
with video frames and optical flow to learn the appearance
and motion features. RSTAN [12] conducts random sampling
for multiple times and takes an average of the scores of the
segmented groups to produce the final classification. Proposals
like [9], [24] place RNN layers on top of CNN models to learn
the temporal evolution of dynamic actions, where attention
mechanism is mostly adopted to capture the salient area of
featuremaps at each iteration step. Compared with 2D CNNs,
3D CNNs are considered as a more suitable solution for their
spatio-temporal modelling ability. Thanks to the presence of
large-scale action datasets such as Kinetics [25], 3D CNNs can
be initialized with weights pre-trained on these datasets and
get rid of the overfitting problem. Among 3D solutions, I3D
[6] achieves an impressive performance with the optionally
combined two-stream frameworks. With the purpose of im-
proving model efficiency, ECO [5] is developed with 2D CNN
to learn the appearance feature of each independent frame
and 3D CNN to capture the temporal relationships between
adjacent frames. To select the discriminative frames that are
relevant to actions, SAST [26] adds a temporal attention model
between 2D and 3D CNNs. SMART [63] builds relationship
between frame-level local features and video-level global
features through attention module. Although state-of-the-art
performances are obtained on several challenging datasets, the
appearance-based CNN approaches can not give an explicit
clues of their classification choice. Philippe et al. [23] analyse
the recognition bias of 3D CNNs, proving that the classifica-
tion is often made by static context such as objects and scenes
instead of actual action in the video. Some other approaches
have also found such scene bias of CNNs and proposed
various solutions. Jinwoo et al. [68] introduce novel losses in
pre-training to prevent model from making predictions from

1https://github.com/Mona9955/PARNet
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Fig. 1: Architecture of the proposed PARNet. The sampled T=16 video frames and the corresponding 2D pose skeletons are
fed into the SA Module and TMP Module, respectively. In the TMP Module, the encoded pose-fusion vector Pt is exported
to the temporal iteration of pose representation h̃p

T and motion representation h̃v
T . In the SA Module, 2D CNN is utilized to

generate the global appearance representation F . The mid-level featuremaps of SA are modulated by Pt through the
Attentional Appearance Selection in the PA Module. This process is performed at each time step along with RNN iteration

until the pose-aware representation h̃r
T is obtained. Finally, [h̃p

T ; h̃
v
T ; h̃

r
T ;F ] are concatenated to form the comprehensive

representation of video actions.

the scenes. Yingwei et al. [69] propose a procedure named
RESOUND to quantify and minimize representation biases of
action datasets. In our approach, we introduce dynamic pose
features in complementary with appearance features to obtain
a discriminative representation of action.

B. Pose-based Action Recognition

Different from visual appearance, human poses concentrate
on the on-going actions and are very suitable to represent tem-
poral action dynamics. Many action recognition studies [27],
[64] take 3D pose skeletons as inputs and achieve excellent
accuracy in indoor datasets [20]. Since the 3D poses they
used are mostly obtained by depth sensors such as Microsoft
Kinect [20], [27] or Motion Capture (MoCap) systems [28],
[29] under constrained environments, which greatly hinders
the realistic application of 3D pose-based methods. Even with
the implementation of 3D pose estimators such as LCR-Net
[29], 3D poses are still validated to be vulnerable to the
noise in unconstrained videos [23]. With the development
of 2D pose estimation methods [21], [22], 2D pose can be
obtained easier than 3D pose and presents higher stability and
accuracy, making it a potential choice for action recognition.
Luvizon et al. [13] aggregate pose estimation and recognition
into a unified framework. They leverage two-stream CNNs to
process the extracted pose skeletons and the visual featuremaps
from the pose estimation part, and combine their classification

results to make final prediction. ST-GCN [27] represents
each joint with 2D coordinates and confidence scores derived
from OpenPose [21], and models the pose sequence with
graph convolutional network. However, due to the varying
video capturing environments, challenging problems like joints
occlusion, wrong detection, and body truncation inevitably
appear in the pose estimation stage, which may cause great
degradation to the action recognition performance. Instead
of using specific coordinates, recent studies utilize mid-level
features/heat maps of pose estimators for action recognition.
RPAN [14] decomposes the joints heatmaps into several body
parts and obtains a discriminative pose feature by attentional
joint selection and part-pooling operation. Potion [16], PA3D
[15] and STAR-Net [17] encode pose representations of dif-
ferent modalities through temporal aggregation, and re-input
them into 3D CNNs for action recognition. These methods are
mostly built upon specific 2D pose estimators, and collaborate
with some other independent strong 3D CNNs (e.g., two-
stream I3D [6]) to achieve performance gains with auxiliary
appearance representations.

In this work, 2D poses derived from videos is used as
the pose input. Thus, various pose estimators [21], [29],
[22] can be adopted as pose-detection tools. Through the
relational modeling strategy, pose-stream and appearance-
stream complement each other effectively. Therefore, PARNet
is not limited to visual contexts or dynamic poses, but has
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Fig. 2: (a) 14 human keypoints (joints) detected by 2D pose
estimator. (b) Human parts and corresponding keypoints.

a comprehensive understanding of on-going action, which
reduces the recognition bias.

III. METHODS

Firstly, we give a brief introduction of the Multi-Person 2D
Pose Estimator adopted in our approach. Then we present
the architecture of the Temporal Attention LSTM, which
is the basic component of RNN layers in PARNet. After
that, three main modules are introduced separately, i.e., the
Temporal Multi-Pose RNN Module, the Spatial Appearance
CNN Module, and the Pose-Aware RNN Module.

A. Muti-Person 2D Pose Estimation

The 2D pose estimator proposed in [21] is employed for its
real-time property and robustness in multi-person scenarios.
It works in a bottom-up way with Part Affinity Fields to
associate the detected body parts. There are 14 keypoints for
each person (shown in Figure 2(a)) instead of 18 keypoints
utilized in the original method. Figure 3 shows estimated pose
examples in diverse action videos. The first row lists the easy
cases with clear actions and complete poses. The second row
shows the hard cases, including crowed environments, small
targets, and pose truncation. The third row presents several
failure cases which include wrong detection and miss detection
due to background clutters, small targets and truncated human
body. The unstable estimated poses become a great challenge
to the pose-based action recognition methods.

B. Temporal Attention LSTM (TA-LSTM)

Long-Short Term Memory (LSTM) [30] is a proper choice
for action recognition due to its sequential modelling ability.
In order to capture long-term contextual information in action
videos, a temporal attention mechanism is adopted to enhance
the memory of LSTM cell. As presented in [31], [32], the
previous tokens within a time window are adaptively selected
and merged by the attention mechanism to build a memory
injected representation, which is in complementary with the
current step input. Thus, the impact of negative inputs, e.g.,
incomplete poses or visual features cluttered with noise is ef-
fectively reduced. Therefore, the memory-enhanced Temporal

Fig. 3: Pose estimation examples of diverse action videos.

Attention LSTM improves the robustness of the network while
maintaining the advantage in long-term action recognition.

The TA-LSTM architecture is shown in Figure 4. At time
step t, the attention vector h

′

t−1 from the last iteration step
is concatenated with the current input xt to form the input of
the LSTM cell. Specifically, the hidden state ht and the cell
state ct are calculated by:

x
′

t = Wi[xt;h
′

t−1] (1)
it
ft
ot
ĉt

 =


σ
σ
σ

tanh

W · [x
′

t;ht−1] (2)

ct = ft ⊙ ct−1 + it ⊙ ĉt (3)

ht = ot ⊙ tanh(ct) (4)

Where Wi,W are parameters of the Fully-Connected layers
(abbreviated as FC in Figure 4), σ and ⊙ refer to the
sigmoid activation and the element-wise product function.
Given the concatenation of ht and ct as a query, the attention
distribution ut = {ut

t−n, · · · , ut
t−1} can be calculated by

attention mechanism [33] upon the previous n steps outputs
H̃t−1 = (h̃t−n, · · · , h̃t−1). Softmax is used to normalize ut

to get the attention map at. Through the attentional selection
and aggregation over H̃t−1, the current attention vector h

′

t is
obtained. The whole process can be given as:

ut
i = vT tanh(W

′

1h̃i +W
′

2[ht; ct]) (5)

ati = softmax(ut
i) (6)

h
′

t =
∑t−1

i=t−n
atih̃i (7)

The output at time step t is obtained through a linear trans-
formation of the concatenation of ht and h

′

t:

h̃t = Wo[ht;h
′

t] (8)
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Fig. 4: Architecture of TA-LSTM layer. We use TA-LSTM
cell at time step t as an illustration. The attention vector

from the last time step h
′

t−1 and the current step input xt are
concatenated to form the input of LSTM cell. Then the
calculated hidden state ht and cell state ct are used to

perform attentional selection on the previous n steps outputs
and generate current attention vector h

′

t, which is combined
with ht to form the output h̃t of TA-LSTM cell.

and the adjacent outputs within the sliding time window is
updated as: H̃t = (h̃t−n+1, · · · , h̃t). The vector v and ma-
trices W

′

1,W
′

2,Wo are trainable parameters. For convenience,
the calculation process from equation 5-7 can be denoted as:

h
′

t = Attention([ht; ct], H̃t−1) (9)

It should be noted that the attention vector h
′

t plays multiple
roles in the Temporal Attention LSTM. Besides composing the
current step output, h

′

t is exported to the input of the next
recurrent step, which strengthens information transmission
over the whole action period.

Based on the analysis above, Temporal Attention LSTM cell
can be summarized as:

h̃t, St = TA-LSTM(xt, St−1) (10)

St = ((ht, ct), h
′

t, H̃t)

St denotes the state set at time step t. It is worth mentioning
that the temporal memory capacity of H̃t is controlled by the
sliding window size n, which is an important hyperparameter
affecting model’s performance and computational complexity.

C. Temporal Multi-Pose (TMP) RNN Module

For the pose stream, a Multi-Pose Encoding Layer is used
to encode the 2D pose skeletons. Then the multiple encoded
poses are adaptively selected during the temporal evolution of
the Multi-Pose Attention RNN Layer. Both pose representa-
tion and motion representation are calculated to capture the
dynamic information.

1) Multi-Pose Encoding Layer: Given 2D coordinates of
keypoints as input, the Multi-Pose Encoding Layer is deployed
to generate high-level pose features based on the physical
body structure. The maximum person number is set to N
in each frame. Thus data clipping and zero padding are
utilized to adapt the multiple human poses to a fixed size of
N × K × 2, where K refers to the keypoint number, which
is 14 in our approach, and 2 corresponds to the dimension
of (x,y) coordinates. For each person, the skeleton keypoints
are grouped into five body parts according to the semantic

Fig. 5: Pose encoding architecture.

relationships (Figure 2(b)). Then, as shown in Figure 5, the
body parts l = {li}5i=1 are passed through the parameter-
sharing Parts Encoding Layer with Multi-Layer Perceptron
(MLP). Finally, the encoded parts feature le = {lei}5i=1 are
concatenated and linearly transformed by the Pose Encoding
Layer to get a pose vector pm.

lei = tanh(W l
2(relu(W

l
1li)) + bl) (11)

pm = W l
3Concat(le1 , le2 , ..., le5) (12)

Here the body parts are transformed into 32 and 100
dimensions by W l

1 and W l
2, respectively. bl refers to the bias

parameter. Activation functions of tanh and relu are leveraged
to imply non-linear transformation on the parts encoding
process. W l

3 in the Pose Encoding Layer is used to transform
pose feature into a 512-dim vector. Thus, the multi-pose set
Pm can be represented as Pm = (pm1 ,pm2 , ...,pmN

)

2) Multi-Pose Attention RNN Layer: The Pose RNN layer
is comprised of the TA-LSTM as basic cell. At each iteration
step, the previous output h̃p

t−1 is used to perform the atten-
tional selection on the current multi-pose set Pm,t. Thus, the
pose-fusion vector Pt is generated by:

Pt = Attentionp(h̃
p
t−1, Pm,t) (13)

Here Attentionp is the attentional pose selection function
which works in the same way as Equation 9.

The Pose RNN Layer is fed with Pt at each iteration, which
can be given by:

h̃p
t , S

p
t = TA-LSTM(Pt, S

p
t−1) (14)

where Sp
t denotes the pose state set.

In our model, the Pose RNN employs a bidirectional struc-
ture, in which the forward/backward outputs at the last time
step T are concatenated to form h̃p

T = [h̃
pf

T ; h̃pb

T ] as the pose
representation.

3) Motion RNN Layer: To further model pose dynamics
in human actions, a motion representation is implemented
by performing temporal difference in the pose-fusion vector
sequence, and another motion RNN layer is built on the
temporal differences:

P
′

t = Pt − Pt−1, t = 2, ..., T (15)

h̃v
t , S

v
t = TA-LSTM(P

′

t , S
v
t−1) (16)

Similar to the pose RNN layer, the motion RNN layer also
employs a bidirectional structure and h̃v

T = [h̃
vf
T ; h̃vb

T ] is taken
as the motion representation.
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Fig. 6: The attention process to generate the pose-aware local
appearance feature fr

t . The pose-fusion vector Pt is utilized
to perform attentional selection on the relevant mid-level
featuremap F4e,t. This process is performed iteratively by

feeding fr
t into the Relation RNN Layer at each time step.

D. Spatial Appearance (SA) CNN Module

For the appearance stream, 2D convolutional network is
utilized to extract spatial features from the frame sequence.
The BN-Inception architecture is employed [34] consider-
ing both efficiency and accuracy. The outputs of the 2D
CNN model include two-stage featuremaps with different
resolutions. Since earlier convolutional layer keeps richer
spatial information, the mid-level feature sequence F4e ∈
RT×14×14×256 from inception-4e layer is exported to the Pose-
Aware Module. Meanwhile, the high-level feature sequence
F5b ∈ RT×7×7×1024 from final convolutional layer is used to
generate the global appearance feature F through:

F = Avg pool(Conv(vTs F5b,Wt)) (17)

Here, F5b is firstly transformed by vs to reduce the channel
into 512. Wt ∈ R3×1×Cin×Cout is the parameter of the
temporal convolution layer. The kernel size along temporal
dimension is set to 3, which improves correlation between
adjacent frames. Then the temporal-correlated feature se-
quence is squeezed in both spatial and temporal dimensions
by average-pooling operation.

E. Pose-Aware (PA) RNN Module

Figure 6 shows the process of pose-aware attentional ap-
pearance selection at time step t. The pose-fusion vector
Pt is used as the guidance to modulate the relevant mid-
level featuremap F4e,t. Conv1×1 is applied on the modulated
features to generate a single-channel attention map, which is
then normalized by the softmax operation. Thus, the local
appearance feature fr

t can be obtained by attentional weighted
summation over the elements of F4e,t. Finally, the Relation
RNN Layer is built to perform temporal evolution of the local
feature sequence Fr = (fr

1 , · · · , fr
T ). The whole process can

be summarized as:

fr
t = Attentionr(Pt, F4e,t) (18)

h̃r
t , S

r
t = TA-LSTM(fr

t , S
r
t−1) (19)

The last iteration output h̃r
T is taken as the pose-aware

representation. Different from the highly-compressed global
appearance feature F , h̃r

T is a high-level representation gener-
ated from the dynamic evolution of action-sensitive appearance

features, which provides context supplement to the outputs of
TMP Module.

F. Loss function

The pose representation h̃p
T , the motion representation h̃v

T ,
the global appearance representation F , and the pose-aware
representation h̃r

T are concatenated to form the comprehensive
representation H ,

H = [h̃p
T ; h̃

v
T ; h̃

r
T ;F ] (20)

H and the other four representations (h̃p
T , h̃

v
T , h̃

r
T , F ) are

transformed by five independent fully-connected layers to get
classification scores and the corresponding losses. These losses
are added with coefficient 1 to get the objective function,
which can be given by:

Ltotal = LH + Lp + Lv + Lr + LF + λ ∥Θ∥2 (21)

Where ∥Θ∥2 is the L2-norm weight decay normalization
applied on model parameters with the coefficient λ. L is the
softmax cross-entropy loss which is widely used for action
classification.

IV. IMPLEMENTATIONS

In the training stage, the mini-batch stochastic gradient
descent (SGD) algorithm with a momentum of 0.9 is employed
as the optimizer. The coefficient λ of the L2-norm weight
decay loss is set as 4e-5. The initialized learning rate is linearly
increased to 1e-3 in the first 200 steps through the warm-up
strategy. All the RNN layers are with the hidden size of 512.
The BN-Inception architecture in the SA Module is initialized
with the weights pre-trained on the ImageNet dataset [35].
Sparse sampling strategy [4] is adopted in the selection of
frame/skeleton sequences. We divide the original video into
T=16 segments and randomly select one frame and its relative
skeleton coordinates from each segment, forming the frame
groups and the skeleton groups. Random cropping and scaling
are used as the augmentation methods for the frame groups,
and the output size of each frame is fixed as 224 × 224.
For the skeleton groups, the maximum number of persons
is set as N=4, thus the skeleton groups are with the size of
T ×N×K×2 = 16×4×14×2. Position transfer and scaling
are applied to the skeleton groups along with the change of
the corresponding frame groups. Random horizontal flipping
is also performed with the probability of 0.3 on frame/skeleton
groups.

In the inference stage, frames and skeletons in the middle
of each segment are chosen to form the testing frame/skeleton
groups. The smaller dimension of frames is re-scaled to 256
and the other dimension is resized with the same ratio. Center
cropping is applied on the resized frames to keep the output
size of 224×224. Similar to the training stage, skeleton groups
are also transformed along with the frame groups.

V. EXPERIMENTS

A. Datasets

The following 7 action recognition benchmarks are lever-
aged to testify the proposed model, i.e., the pose-complete
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datasets of KTH, Penn-Action, UCF11, in which the extracted
2D poses are mostly intact, with small ratios of videos
with joints-occlusion and pose-truncation; the pose-incomplete
datasets of UCF101, HMDB51 and JHMDB which have a
fraction of videos that only contain part of the body, such
as “chew”, “brush hair”, and “cutting in kitchen” where only
face (head) or hands are visible, making it even harder for
pose detection and recognition; and the NTU-RGBD dataset
with depth information, on which PARNet still works with 2D
skeletons.

KTH [36] includes 6 kinds of actions acted by 25 subjects
in four different scenarios. There are total 2391 single-person
videos in KTH, most of which have static backgrounds.

Penn-Action [37] consists of 2326 videos with 15 action
classes. All the videos are collected from the internet, making
it a challenging dataset with various of perspectives and
backgrounds.

UCF11 [38] is known as the YouTube action dataset com-
posed of 1600 videos among 11 actions. Inference factors such
as camera motion, viewpoint change, clutter background and
illumination are involved in it.

UCF101 [39] is also a challenging real-world dataset with
videos collected from the YouTube. It has 13320 videos
from 101 categories, with large action diversities including
pose/object variance and all the difficulties listed in the
UCF11. UCF11 and UCF101 both have three splits.

HMDB51 [40] is a large complex dataset comprised of web
videos and movie clips. It has 6766 videos with 51 action
categories. It has three splits with 70 videos for training and
30 videos for testing in each category.

JHMDB [41] is a subset of HMDB51 which consists of
928 videos in 21 actions. It also has three splits with about
660 training videos and 268 testing videos.

NTU-RGBD [20] is a large action recognition dataset with
56880 clips in 60 action classes. It is captured under indoor
experimental conditions with Kinect depth sensor to provide
3D skeleton annotations.

B. Ablation Study

Series of property evaluations are conducted in this part
to analyse the effectiveness of the important components of
PARNet. Both qualitative and quantitative analyses are used
to explore how and to what extend these components affect
the model’s performance. The pose-complete datasets of KTH,
Penn-Action and UCF11(split1) are used as the benchmarks
in this section. When a specific property is analysed, the other
settings of the model are kept unchanged. Models in all the
experimental settings are trained from scratch.

Analysis of the TMP, SA and PA Modules We conduct
experiments separately with the TMP Module and the SA
Module to assess the properties of each part. As shown in
row 1 & 2 in Table I, the TMP Module achieves better
performance than the SA Module in KTH and Penn-Action,
but the accuracy in UCF11-1 is much lower. The reason is
that UCF11 is a complex YouTube dataset accompanied with
more defective pose data. Therefore, the importance of the
pose-stream and the appearance-stream varies in datasets with

TABLE I: Performanc of the TMP, SA, TMP+SA Modules
and the whole PARNet on KTH, Penn-Action, and UCF11-1.

Modules KTH Penn-Action UCF11-1
TMP 93.5 95.8 80.6
SA 93.2 94.7 93.8

TMP+SA 94.1 97.2 95.1
PARNet (TMP+SA+PA) 97.2 99.2 97.9

TABLE II: Performances of PARNet with different
multi-pose fusion methods on Penn-Action and UCF11-1

Pose-Fusion Methods Penn-Action UCF11-1
Sum 98.3 96.1
Attention 99.2 97.9

different characteristics. It is essential to fuse them in a proper
way to improve the stability of performance.

But is it enough to simply combine the TMP Module
and the SA Module? To validate the effectiveness of the
pose-appearance relational modeling strategy, a TMP+SA ar-
chitecture is constructed without the PA Module. For the
TMP+SA, the comprehensive representation H in equation 20
is modified as H = [h̃p

T ; h̃
v
T ;F ], and the classification losses of

(H, h̃p
T , h̃

v
T , F ) are equally added to form the target loss. The

results of TMP+SA are listed in row 3 of Table I, which shows
a degradation of 2% to 3.1% compared with PARNet among
the three pose-complete datasets. It demonstrates that the pose
and appearance streams bring positive effects to each other
through the relational modelling deployed by PA Module.

Meanwhile, the confusion matrix is utilized to give a more
detailed analysis of the pose and appearance modules. As
shown in Figure 7, the classification results of PARNet, TMP
Module and SA Module on the 15 actions of Penn-Action
dataset are presented. The misclassification mainly happens
between the “tennis forehand” and “tennis serve” categories
for the SA Module (Figure 7(c)). These two tennis-related
actions have similar backgrounds, e.g., the tennis courts and
the stadiums shown in Figure 8(b), which occupy large portion
of the frames. Hence, the SA Module cannot tell the subtle
movements and difference from the global appearance repre-
sentation. Meanwhile, there are 7 “squat” videos misclassified
as “clean and jerk” for the same reason. This problem is
solved in the TMP Module (Figure 7(b)) because the temporal
modelling of pose skeletons can better capture the dynamic
movements. However, there are also drawbacks for the pose-
based method. The first one is the confusion caused by the
similar motion dynamics between some action categories. For
example, both of the “tennis forehand” and “bowl” in Figure
8(a) have the dynamic process of arm swing from bottom to
top, leading to the misclassificaiton of 4 videos. The other
one is the performance degradation caused by the defective
skeleton data. Therefore, the pose and appearance streams
need to complement each other effectively, thereby realizing
true understanding of the on-going action. It can be seen from
Figure 7(a) that PARNet shows a superior performance among
all categories, indicating that the robustness and accuracy of
the model are both improved.
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Fig. 7: Confusion matrices of (a) the full PARNet, (b) the
TMP Module, (c) the SA Module on the Penn-Aciton

dataset.

Attentional Selection in Pose and Appearance Attention
mechanism is deployed in both the multi-pose selection of
TMP Module and the pose-aware appearance selection of PA
Module. In the Attentional Pose Selection process, the multiple
poses are assigned with different attention weights according
to their relevance with the pose representations generated at
each iteration step. Since the temporal evolution of the pose-
stream is directly corresponding to the dynamic change of
actions, the model tends to pay more attention to the moving
subjects. The first rows of two actions in Figure 9 illustrate
the attention distribution of multiple poses in each frame. Take

Fig. 8: The misclassification cases of TMP Module and SA
Module. (a) Since the actions of “tennis forehand” and

“bowl” both have a bottom-up arm swing process, it brings
confusion to the TMP Module concentrating on dynamic
poses. (b) The videos of “tennis forehand” and “tennis

serving” mostly have similar backgrounds occupying large
portion of frames, leading to misclassification of the

appearance-based SA Module that is biased towards scenes.

the action “baseball swing” in Figure 9(a) as an example. As
the action changes from baseball-throwing to baseball-hitting,
the attention transfers from the pitcher (left) to the batter
(right). For the action “high jump” in Figure 9(b), there are
irrelevant persons appearing in the first two frames. The atten-
tion mechanism correctly distinguishes the target person from
the surrounding people, which improves the discrimination
of the generated pose-fusion vector. To make a quantitative
illustration of the effect of multi-pose attentional selection
operation, we conduct comparative experiments which directly
sum the multiple encoded poses to form the pose-fusion vector
Pt. The comparison results are shown in Table II. Since the
KTH dataset is captured under single-person scenarios, it is
not introduced to the comparison experiments. The models
equipped with Attentional Pose Selection show higher ac-
curacy compared with the ones with direct-sum operations,
especially in the UCF11 dataset which has more multi-person
videos.

Different from features generated from specific pose skele-
tons, the poses-aware local appearance feature contains visual
information of the target person, the surrounding scenes or
the related objects. Such action-sensitive information provides
context supplement to the pose features. The second rows of
the two actions in Figure 9 show the dynamic changing of
active regions in the Attentional Appearance Selection process.
In the “baseball swing” example, the lighting areas are mainly
around two players, especially the one who is performing the
dynamic movements. For the “high jump” action with fast-
moving subject and dynamically changing backgrounds, the
model attends to the person and the surrounding scenes such
as the athletic track and the rail, and filters out unrelated
information like the background audiences. Figure 10 shows
the visualized attention maps of the sampled frames, which
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contain objects that are important parts of the actions and
interact with people. For the “walking with dog” example,
the attention areas concentrate on two moving targets, i.e.,
the person and the dog. As for the “playing daf” action
with a static background, the model mainly focuses on the
musical instrument, and the attention weights become much
larger once human hand slaps the daf. Taking into account
the quantitative study about the effectiveness of PA Module in
the previous section, we can draw a conclusion that the pose-
aware attentional selection not only assists in the performance
enhancement, but also improves the interpretability of the
model.

Sliding time window in TA-LSTM The TA-LSTMs are
used in three parts of the PARNet: Pose RNN layer and
Motion RNN Layer in the TMP module, Relation RNN layer
in the PA module. Since the size of time window plays a
key role in the memory-enhanced TA-LSTM cell, we present
the model results varying with different window sizes in
Figure 11. When the window size equals to 0, the TA-LSTM
functions as a normal LSTM cell. We can see that PARNet
achieves the best performance when the window size is set
to 5 in all three benchmarks, while the accuracy declines
when the window size becomes larger. Overall, the models
equipped with TA-LSTM (window size>0) perform better
than the normal LSTM (window size=0) ones. The accuracy
trend in Figure 11 proves that the aggregated information
from the previous states benefits the current prediction, but the
information needs to be constrained within a proper range. In
our experiments, the sliding window size is set as 5.

C. Comparison with the State-of-the-arts

We compare PARNet with other state-of-the-art methods un-
der the pose-complete datasets (KTH, Pann-Action, UCF11),
the pose-incomplete datasets (UCF101, HMDB51, JHMDB),
and the NTU-RGBD dataset. Since approaches with different
solutions have been evaluated on these types of benchmarks,
we can have a more comprehensive understanding of the pros
and cons of PARNet. It is worth noting that the optical flow
is not used in our experiments. There are two reasons for this.
One is that the pose and motion representations have been
deployed to capture the dynamic information, which is a more
efficient and concise method compared with optical flow; the
other is to avoid the high computational cost of extracting
optical flow. Two-stream methods [4], [6], [53] usually adopt
TV-L1 algorithm [59] to extract optic flow. However, the TV-
L1 algorithm is unable to meet the real-time requirements
in video-based action recognition tasks (≥ 25fps). Recently,
many deep learning based methods have been proposed and
achieved a significant increase in the computational speed of
optical flow (up to 10-150fps), such as FlowNet [62], FlowNet
2.0 [60]. However, the speeds of these methods are still
slower than the 2D pose estimation methods (28-180fps), such
as OpenPose [21], Pose Proposal Networks [61]. Moreover,
human keypoint coordinates generated by pose estimators have
much smaller size compared with optical flow, which largely
reduces memory consumption and improves I/O efficiency for
the downstream action recognition models.

TABLE III: Comparison results of PARNet with other
state-of-the-art (SOTA) methods on pose-complete datasets

of KTH, Penn-Action and UCF11 (over 3 splits)

Methods KTH Penn-Action UCF11
DT(2011) [2] 94.2 - 84.2

Visual Attention(2015) [24] - - 85.0
Two Stream LSTM(2017) [10] - - 94.6

RPAN(2017) [14] - 84.8 -
3-stream CNN(RGB+Flow+Trajectory)[58] 96.8 - -

Multitask(2018) [13] - 97.4 -
Attention Again(2018) [9] - - 90.1

ST-GCN(OpenPose)*(2018) [27] - 71.61 -
DA-Potion(2020) [19] - 97.2 -

Two-Branch(2020) [54] 98.3 - -
SIP-Net(2021) [23] - 93.5 -

SIP-Net+3DResNeXt101(2021) [23] - 98.9 -
Three Schemes(2021) [42] 97.0 - 95.6

PARNet (Ours) 97.2 99.2 97.0
* is quoted from the reproduced experiment result in [23]

Results in pose-complete datasets We first conduct exper-
iments on the pose-complete datasets. The comparison results
are summarized in Table III. A variety of approaches have
been performed on these three datasets, including the methods
based on handcrafted features [2], [42] and encoded pose
features [14], [19], [23], the visual feature attentional selection
methods [24], [9]. Compared with Multitask [13], which
combines the 2D/3D pose estimator and action recognizer
into an unified framework and makes prediction based on
both the generated pose skeletons and visual featuremaps
modulated by joint heatmaps, our PARNet shows a higher
accuracy of 1.8% on the Penn-Action dataset. PARNet also
exceeds the SIP-Net+3DResNeXt101 [23] which leverages
3D ResNeXt101 to learn appearance features together with
pose features. Compared with Three Schemes [42] using three
different methods and complex handcrafted image features for
action recognition, PARNet exceeds it by 1.4% on UCF11 and
0.2% on KTH. PARNet obtains a comparable performance to
Two-Branch [54] on KTH dataset.

Results in pose-incomplete datasets In this part, exper-
iments are conducted on the pose-incomplete datasets and
all the results are averaged over 3 splits. Considering that
the model pre-trained on the Kinetics dataset will show a
significant performance improvement, we make extra compar-
ison experiments using Kinetics pre-trained model to further
demonstrate the potential and advantage of our framework.

We first compare PARNet with the methods employing the
ImageNet pre-trained CNNs and the MSCOCO pre-trained
pose estimators in their feature extraction parts in Table IV.
Compared with the appearance-based methods in the first part
of the table, such as TSN [4] and ECO [5], both of which
use the same sparse sampling strategy and 2D CNN structure
with our method, PARNet shows a significant improvement
over the three datasets. The gap is even larger (up to 14.8%
in HMDB51) compared with ImageNet pre-trained I3D [6].
Compared with STAN [43] and R-STAN [12] which conduct
attentional selection on both spatial and temporal dimensions,
PARNet outperforms them by up to 8.3% on UCF101 and
9.5% on HMDB51.

The second part in Table IV lists the pose-based methods,
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Fig. 9: Video examples of (a) baseball swing and (b) high jump. We select 6 representative frames from the sampled videos
to illustrate our motivation. The upper frames of each action illustrate the dynamic multi-pose attentional selection process, in
which the person with larger keypoint dots refers to the target subject with larger attention weights. The lower frames show

the attention maps of the pose-aware appearance selection process, in which the brightness reveals the attention strength.

Fig. 10: Visualized attention maps of pose-aware appearance
selection in (a) walking with dog and (b) playing daf.

which are built upon the mid-level features of pose estimators
pre-trained on the MSCOCO or other datasets. Except for
STAR-Net, most of the other methods fix the parameters of
pose estimators during training. Various specially-designed
methods are developed for the extraction and processing of
the pose features. For example, PA3D [15] leverages the joint
heatmaps, part affinity fields and CNN features for action
recognition. Dynamic Motion [18] applies a dynamic encoder
on the joint heatmaps to capture body movements. For a better
comparison, we also present the results of the pose-related
part of PARNet, which consists of the TMP Module and the
PA Module. The pose-related part (presented as TMP+PA
in the table) outperforms the other pose-based methods by

Fig. 11: The performance of PARNet with different sliding
window sizes on KTH, Penn-Action, UCF11 (split1).

PARNet achieves the highest accuracy when the sliding time
window is set to 5 on all three datasets. Models equipped
with TA-LSTM (window-size > 0) outperform the ones

with normal LSTM (window-size = 0).

a large margin, especially on the two larger action datasets
UCF101 and HMDB51. On JHMDB, it still gets a comparable
performance with PA3D [15] and Joint-Aware [44] which use
either complex input modalities or pose encoding strategy.
Overall, from the comparisons with the competing appearance-
based methods and pose-based methods on all three complex
benchmarks, the superior performances of PARNet illustrate
the advantage of our pose-appearance relational modeling
strategy.

In order to further explore the impact of optical flow, the
two-stream architectures which take RGB frames and optical
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TABLE IV: Comparison results of PARNet with other SOTA
methods on pose-incomplete datasets of UCF101, HMDB51
and JHMDB (over 3 splits). Methods listed in the first and

second parts respectively use the ImageNet pre-trained
backbones and the MSCOCO pre-trained pose estimators in
their feature extraction parts, which can also be classified as
the appearance-based methods and the pose-based methods.

Methods pre-training UCF101 HMDB51 JHMDB
TSN (RGB)(2016) [4] ImageNet 86.4 53.7 -
I3D (RGB)(2017) [6] ImageNet 84.5 49.8 -

Two Stream LSTM(2017) [10] ImageNet - - 69.0
Attention Again(2018) [9] ImageNet 85.8 52.6 -

ECO-16F*(2018) [5] ImageNet 86.4 52.9 58.2
STAN (RGB)(2018) [43] ImageNet 82.8 - -

R-STAN-101 (RGB)(2019)[12] ImageNet 86.2 55.1 -
TSN+TSM (RGB)(2019) [56] ImageNet - 55.2 -

SMART+ResNet-152(2020) [63] ImageNet 75.5 - -
Early fusion(2020) [52] ImageNet 84.7 56.2 -

Potion(2018) [16] MSCOCO 65.2 43.7 57.0
PA3D(2019) [15] MSCOCO - 55.3 69.5

STAR-Net(2019) [17] MSCOCO - - 64.3
Dynamic Motion(2020) [18] MSCOCO 63.5 49.1 60.2

Joint-Aware(2020) [44] MSCOCO - 52.1 68.3
SIP-Net(2021) [23] Synth. data 66 51.2 62.4

TMP+PA (ours) ImageNet 87.7 61.2 67.9
PARNet (ours) ImageNet 91.1 64.6 71.6

* is our reproduced result of ECO with 16 frames input.

TABLE V: Comparison results of PARNet with other SOTA
methods consisting of RGB and optical flow streams. All the

listed models are equipped with ImageNet pre-trained
backbones. Since most of the compared methods present the

results on UCF101 and HMDB51 (over 3 splits), for the
convenience of comparison, we keep it consistent.

Methods pre-training UCF101 HMDB51
TSN(RGB+Flow)(2016) [4] ImageNet 94.0 68.5
I3D(RGB+Flow)(2017) [6] ImageNet 93.4 66.4

3-stream CNN(RGB+Flow+Trajectory)[58] ImageNet 92.2 65.2
STAN(RGB+Flow)(2018) [43] ImageNet 92.8 -

TSN+TSM(RGB+Flow)(2019) [56] ImageNet 94.3 72.7
TS-LSTM(RGB+Flow)(2019) [55] ImageNet 94.1 69.0

R-STAN-101(RGB+Flow)(2019) [12] ImageNet 94.5 68.7
PARNet(ours) ImageNet 91.1 64.6

flow as inputs are listed in Table V. These methods show
higher accuracy of 1.1%∼3.4% on UCF101 and 0.6%∼8.1%
on HMDB51 than PARNet which does not use the optical flow
modality. However, optical flow stream which has the same
architecture as RGB stream, requires separate training, which
greatly increases the computational cost and storage space.

PARNet has the model complexity of 64.9 GFLOPs.
The computation cost is comparable with ECO-16F [5](64
GFLOPs) and TSM-16F [53](65 GFLOPs), and much lower
than I3D-RGB-64F [6](222 GFLOPs) and R-STAN-101-240F
[12](1819 GFLOPs). Figure 12 shows the runtime analysis
on UCF101 dataset. Experiments are conducted on 1 NVIIDA
Titan X GPU with 1 video per batch. Videos per second(vps) is
utilized for the video-based action recognition task. Compared
with two-stream I3D [6] and TSN [4], PARNet is 2.3%∼2.9%
lower in accuracy but 2.9x∼16.4x faster in speed. PARNet also
outperforms their RGB streams in both accuracy and speed.
Compared with RGB-based ECO-16F [5] which is designed

TABLE VI: Comparison results of the appearance-enhanced
PARNet with other SOTA methods. All the listed methods

are initialized with the models pre-trained on Kinetics.

Methods pre-training UCF101 HMDB51
T3D(2017) [7] Kinetics 91.7 61.1

ResNeXt-101(2018) [45] Kinetics 94.5 70.2
ARTNet(2018) [47] Kinetics 93.5 67.6
ECO-EN(2018) [5] Kinetics 94.8 72.4

TSM(2019) [53] Kinetics 95.9. 73.5
SAST-EN(2019) [26] Kinetics 96.4 75.1

3D-ResNet-18+debiased(2019) [68] Mini-Kinetics 200 84.5 56.7
TSN (RGB)(2016) [4] ImageNet+Kinetics 91.1 -
I3D (RGB)(2017) [6] ImageNet+Kinetics 95.6 74.8

Disentangling(2018) [48] ImageNet+Kinetics 95.9 -
StNet(2019) [50] ImageNet+Kinetics 94.3 -
STM(2019) [11] ImageNet+Kinetics 96.2 72.2

TMP+PA+I3D(RGB) (ours) ImageNet+Kinetics 97.2 76.7

TABLE VII: Comparison results of the appearance-enhanced
PARNet with other SOTA methods fed with RGB frames

and optical flow as inputs. All the listed methods are
initialized with the models pre-trained on Kinetics. It should

be noted that our method still does not use optical flow.

Methods pre-training UCF101 HMDB51
TSN(RGB+Flow)

(2016) [4] ImageNet+Kinetics 97.0 -
I3D(RGB+Flow)

(2017) [6] Kinetics 97.9 80.2
HAF+BoW/FV(RGB+Flow)

(2019) [57] Kinetics - 82.4
Early fusion+I3D(RGB+Flow)

(2020) [52] ImageNet+Kinetics 98.2 81.1
SMART+TSN(RGB+Flow)

(2020) [63] ImageNet+Kinetics 98.6 84.3
Potion+I3D(RGB+Flow)

(2018) [16] MSCOCO+Kinetics 98.2 80.9
PA3D+I3D(RGB+Flow)

(2019) [15] MSCOCO+Kinetics - 82.1
Dynamic Motion+I3D(RGB+Flow)

(2020) [18] MSCOCO+Kinetics 98.4 84.2
Joint-Aware+I3D(RGB+Flow)

(2020) [44] MSCOCO+Kinetics - 80.8
TMP+PA+I3D(RGB) (ours) ImageNet+Kinetics 97.2 76.7

for online video understanding, PARNet is lower in speed
but 4.7% higher in accuracy. These performance comparisons
prove that optical-flow stream introduces heavy computational
burden and reduces the inference efficiency. PARNet achieves
the trade-off between speed and accuracy.

Furthermore, to explore the flexibility of our model frame-
work, we fine-tune the Kinetics pre-trained I3D on UCF101
and HMDB51 datasets, and combine it with the pose-related
part of PARNet by averaging the classification scores. In other
words, the SA Module based on 2D CNN is replaced with a
more powerful Kinetics pre-trained 3D CNN to extract the ap-
pearance representation. Comparison results are listed in Table
VI. All the presented methods are under similar experimental
conditions, i.e., pre-trained on Kinetics and without extra op-
tical flow modality. The appearance-enhanced PARNet, which
is listed as the TMP+PA+I3D fusion model achieves the best
performance among all the comparison methods, demonstrat-
ing that the proposed pose-related part can complement well
with 3D CNN, and make feasible cooperation with CNNs in
various architectures.
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Fig. 12: Comparison of speed and performance with SOTA
approaches on UCF101. The runtime is reported without

considering I/O cost. The larger/smaller circles of I3D and
TSN refer to their two-stream/only RGB stream variants,

respectively.

Similarly, we present the results of the Kinetics pre-trained
methods combined with optical flow streams in Table VII.
The first and second blocks list the appearance-based meth-
ods and pose-based methods, respectively. The appearance-
enhanced PARNet (without optical flow) achieves comparable
performance with the SOTA approaches such as SMART [63],
Early fusion [52] and Joint-Aware [44] on UCF101, but lower
accuracy of 4.1%∼7.6% on HMDB51. It is worth noting that
PARNet shows higher performance than the original structure
of these models of up to 15.6% on UCF101 and 12.5% on
HMDB51 in table IV, which proves that optical flow has
a great influence on improving model accuracy. However,
its disadvantages should not be ignored (as in our previous
analysis).
Results in NTU-RGBD dataset Table VIII shows the
comparison results with the architectures based on RNNs [67],
[54], CNNs [65], [13] and GCNs [27], [64] on the cross-
subject (cs) and cross-view (cv) sets of NTU-RGBD dataset.
The proposed PARNet with 2D skeletons outperforms some
3D pose-based models [67], [65]. Compared with ST-GCN
[27], PARNet shows comparable results with its 3D version
and outperforms its 2D version (reproduced by [23]) by 8.3%
on the cross-subject set. Since NTU-RGBD is collected un-
der experimental environments with similar backgrounds, the
contextual information provided by the interactions between
human and objects/scenes is very limited. Depth information,
however, is very informative for action classification in such
scenarios. Thus, there is a gap compared with the highest
scores on NTU. Considering the limitations of 3D pose
acquisition analysed in Section II, the proposed 2D pose-
based model still has its advantages in practical indoor/outdoor
applications.

VI. CONCLUSION

In this paper, a Pose-Appearance Relational Network (PAR-
Net) is proposed for robust action recognition. Our approach
consists of three modules to benefit from both human pose and
image appearance. The pose-stream is oriented to multi-person
scenarios and can adaptively adjust the importance of multiple
poses. Through the relational modeling strategy, the pose and

TABLE VIII: Comparison results of PARNet with other
SOTA methods on NTU-RGBD dataset

Methods NTU(cs) NTU(cv)
ST-LSTM(2016) [67] 69.2 77.7

Joint-Distance(2017) [65] 76.2 82.3
Multitask(2018) [13] 85.5 -
ST-GCN(2018)[27] 81.5 88.3

ST-GCN(OpenPose)* 71.6 -
2s-AGCN(2019) [64] 88.5 95.1
MSG3D(2020) [66] 91.5 96.2
SIP-Net(2021) [23] 64.8 -

PARNet (Ours) 79.9 85.0
* is quoted from the reproduced experiment

result in [23]

appearance streams complement each other. Thus, PARNet
has a comprehensive understanding of on-going action, which
significantly reduces the recognition bias towards specific
visual contexts or dynamic poses in videos. We also evaluate
the performance of the pose-related part and the appearance-
enhanced PARNet for better comparison with the state-of-
the-arts under different experimental settings. Our approach
outperforms the competitors on the RGB video-based bench-
marks and shows robustness towards diverse challenges, e.g.,
the incomplete pose skeletons and pose/scene similarities of
videos from different categories. Evaluations on NTU-RGBD
validate the stable performance of PARNet on large datasets
without rich contextual information.

In the future, we will continue to improve the architecture
design of PARNet, e.g., using transformer network as the main
backbones. Due to the fact that the self-attention mechanism of
transformer ensures connections between all temporal tokens,
transformer can be used to generate pose/appearance repre-
sentations for the action videos with long-term front-to-back
correlations. Moreover, many efficient transformers have been
proposed to reduce the large memory consumption in vanilla
transformer, e.g., Reformer [70] with parameter-sharing and
reversible residual layers, which can preserve the efficiency
of the proposed PARNet. In addition to action recognition
in videos, the pose-appearance relational modeling strategy
can also be applied in other video-based tasks, e.g., activity
understanding [46], video captioning [49] and video parsing
[51], where interactions between human and scenes/objects
contribute to a higher-level understanding of video sequence.
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