Pattern Recognition 98 (2020) 107075

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/patcog

Learning visual relationship and context-aware attention for image )
captioning ke

Junbo Wang*“*, Wei Wang*“*, Liang Wang®"<, Zhiyong Wang¢, David Dagan Feng?,
Tieniu Tan®><

aCenter for Research on Intelligent Perception and Computing (CRIPAC), National Laboratory of Pattern Recognition (NLPR), Institute of Automation, Chinese
Academy of Sciences (CASIA) China

b Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), CASIA, China

¢ University of Chinese Academy of Sciences (UCAS), China

dSchool of Information Technologies, The University of Sydney, Australia

ARTICLE INFO ABSTRACT

Article history:

Received 26 September 2018
Revised 27 September 2019
Accepted 7 October 2019
Available online 8 October 2019

Image captioning which automatically generates natural language descriptions for images has attracted
lots of research attentions and there have been substantial progresses with attention based captioning
methods. However, most attention-based image captioning methods focus on extracting visual informa-
tion in regions of interest for sentence generation and usually ignore the relational reasoning among
those regions of interest in an image. Moreover, these methods do not take into account previously at-
tended regions which can be used to guide the subsequent attention selection. In this paper, we propose
a novel method to implicitly model the relationship among regions of interest in an image with a graph
neural network, as well as a novel context-aware attention mechanism to guide attention selection by
fully memorizing previously attended visual content. Compared with the existing attention-based image
captioning methods, ours can not only learn relation-aware visual representations for image captioning,
but also consider historical context information on previous attention. We perform extensive experiments
on two public benchmark datasets: MS COCO and Flickr30K, and the experimental results indicate that
our proposed method is able to outperform various state-of-the-art methods in terms of the widely used
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1. Introduction

Image captioning [1-3], which automatically generates natural
language descriptions for images, has a wide range of applications,
such as image retrieval, aiding the visually impaired, and intelli-
gent human computer interaction. For decades, it has been a chal-
lenging cross-disciplinary task involving both computer vision and
natural language processing.

Recently, deep learning techniques such as Convolutional Neu-
ral Network (CNN) [4,5] and Recurrent Neural Network (RNN)
[6,7] have significantly contributed to the great progresses in im-
age captioning [8-10]. In particular, various visual attention-based
encoder-decoder models have been widely explored for image cap-
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tioning [11-13] with great success by emphasizing visually impor-
tant content. However, these methods often have the following two
limitations. First, while specific regions or objects of interests in
an image are attended during sentence generation, the relationship
among those regions or objects has not yet been explored. For ex-
ample, to caption an image with human-annotated description “the
man is walking a herd of sheep on the road through a town”, a
captioning method needs to figure out the relationship among vi-
sual objects in the image, i.e., the relationship “walking” between
“man” and “a herd of sheep” and the relationship “on” between “a
herd of sheep” and “road”. Second, most current attention-based
image captioning methods focus on objects/regions most relevant
to the word being generated at each time step, and ignore what
has been attended to at previous time steps. As a result, these
models may attend to the same region in an image at multiple
time steps, which could compromise the effectiveness of the cap-
tioning method.

Based on the above observations, we leverage a graph neural
network (GNN [14]) to implicitly model the visual relationship be-
tween objects or regions in an image and propose a visual context-
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aware attention mechanism to guide sentence generation with pre-
viously attended content. In particular, we first utilize a deep CNN
to extract visual representation of an input image, and consider
each region of interest as a node and build a relationship graph
where all the nodes are fully-connected in an undirected way. The
GNN [14] propagates messages along all edges in a recurrent man-
ner and outputs all representations corresponding to the nodes in
the graph, which can be viewed as implicit relation-aware visual
representations among objects in the image. Then our context-
aware attention model will attend to the learned relationship rep-
resentations at each time step. To memorize what has been at-
tended to, we use a Long Short Term Memory (LSTM) to keep
track of previously attended visual content and fuse the attention
weight produced by our visual attention model at the current time
step with the attention weight produced at the previous time steps
for a joint attention model. Finally, we employ a LSTM-based lan-
guage model to predict next word given previously generated word
and relation-aware visual representations selected by our context-
aware attention model.
In summary, main contributions of our work are as follows:

We propose to implicitly model the relationship among the ob-
jects/regions in an image with a GNN, which takes into account
the visual relationship among regions of interest for better rep-
resentation of the visual content in the image.

We propose a novel visual context-aware attention model to
select salient visual information at each time step, which uti-
lizes a contextual LSTM to keep track of previously attended
visual information and combine the attention weight produced
by our attention model at the current time step with the atten-
tion weight produced at the previous time step.

We conduct extensive experiments to quantitatively evaluate
our proposed method on two public benchmark datasets: MS
COCO and Flickr30K. Experimental results demonstrate that our
proposed method performs much better than other state-of-
the-art methods.

The remainder of this paper is organized as follows. In
Section 2, we first review some most relevant studies: image cap-
tioning and graph neural network. In Section 3, we introduce the
overall framework of our proposed method and detail each compo-
nent in the framework. In Section 4, we describe the experimental
datasets, training setups, evaluation metrics, quantitative and qual-
itative analysis. In Section 5, we draw our conclusions and future
work on this topic.

2. Related work

In this section, we review two types of studies most relevant to
our work: image captioning and graph neural network.

2.1. Image captioning

The recent work on image captioning can be grouped into three
categories: template-based methods, retrieval-based methods and
neural network-based methods. The template-based methods
[15-18] first detect key visual concepts (e.g., objects and attributes)
from images by utilizing object detection and attribute classifica-
tion methods. According to predefined language templates, these
methods split a sentence into several parts (e.g., subject, verb and
object). Finally, these methods align the detected visual concepts
with the parts in a language template via statistical methods (e.g.,
CRF [16] and HMM [17]). Since these methods highly rely on pre-
defined language templates, they can only generate syntactically
correct sentences at the loss of the flexibility of natural language.

The retrieval-based methods [19-22] usually measure the simi-
larity between an input image and external sentences or the sim-

ilarity between the input image and other visually similar images.
Based on the similarity, these methods can choose most semanti-
cally similar sentences from an external sentence pool or candidate
sentences extracted from those visually similar images. As a result,
these methods can generate human-level sentences as all the sen-
tences were manually produced by humans. However, these meth-
ods are difficult to be transferred to different datasets and cannot
generate novel sentences for images.

The neural network-based methods [8,23,24] utilize deep neu-
ral networks to exploit conditional probability distribution given
the visual content and generated words. Inspired by the success of
encoder-decoder models in neural machine translation [6,7], these
methods consider image captioning as a translation task (bridg-
ing source image to target language). For example, Vinyals et al.
[8] employ a deep CNN to encode an input image into a static
vector and utilize a LSTM-based language model to decode a sen-
tence based on the encoded vector. Similarly, Mao et al. [25] first
use a deep convolutional network to encode an input image and
employ a RNN-based language model to encode previously gener-
ated words, then propose a multimodal model to combine both vi-
sual and textual information to predict next word. Karpathy et al.
[24] also propose a multimodal recurrent neural network model
to align information of two modalities as well as simultaneously
locate the key objects in the generated sentence. Donahue et al.
[23] and Jia et al. [26] both explore different ways of combin-
ing visual information with LSTM block to guide sentence gener-
ation. However, the encoded static vector in the abovementioned
methods is not sufficient to represent the whole image due to
the missing objects. Inspired by the success of attention mech-
anism in natural language processing [27] and computer vision
[28,29], Xu et al. [11] propose a visual attention model to select
the most relevant region representation for generating each word
during sentence generation, instead of using a global static vec-
tor. As a result, this method can generate a sentence according
to different visual content at each time step. However, the vi-
sual attention model has to attend to visual content even when
generating non-visual words (e.g., “a”, “the” and “of”). Therefore,
Lu et al. [13] propose a novel adaptive attention model to deter-
mine whether to attend to the image or to the visual sentinel to
extract meaningful information for sentence generation. Different
from these visual attention models, Zhou et al. [30] propose a text-
conditional attention model to allow the caption generator to at-
tend to certain visual content given previously generated words.
You et al. [31] and Wu et al. [32] propose a semantic attention
model to selectively attend to semantic concept proposals and in-
corporate them into the input and output of the LSTM-based lan-
guage model via the top-down and bottom-up computation. How-
ever, most existing works try to optimize the likelihood of the next
ground-truth word using back-propagation, which leads to the ex-
posure bias between training and testing. To address this prob-
lem, recent works [33,34] employ policy-gradient methods to di-
rectly optimize non-differentiable metrics for the task. Some re-
searchers [35,36] also replace RNN-based language models with
CNN-based language models to address the inefficiency of LSTM
across time during sentence generation. Furthermore, in order to
obtain better image representations for image captioning, previ-
ous works [9,10] first generate several object proposals and extract
corresponding features of these object proposals for further pro-
cessing. Recent works [37,38] also leverage visual relationships to
generate region/image captioning, which detect visual relationship
classes based on visual objects explicitly detected by the Faster R-
CNN object proposal network pre-trained on the Visual Genome
[39] dataset, while our work learns implicit visual relationships on
image regions of interest on the COCO/Flickr dataset, which does
not need pre-defined relationship classes and explicit object de-
tections.
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Fig. 1. The overall framework of our proposed image captioning method which consists of four components: CNN-based deep feature extraction, graph-based visual rela-
tionship modelling, visual context-aware attention model and LSTM-based language model.

2.2. Graph Neural Network

To apply neural networks to graph data, a GNN employs feed-
forward neural networks to all nodes of the graph in a recurrent
way. At each time step, the GNN takes previous hidden state of
each node and the messages from its adjacent nodes as input to
dynamically update the current hidden state of each node. In [14],
the GNN employs multi-layer perceptrons (MLP) to update the hid-
den state of each node. However, to ensure the gradient-descent
strategy based learning algorithm converge, their contraction map
assumption has trouble to propagate information across a long
range in a graph. To address the problem, Li et al. [40] propose
Gated Graph Neural Network (GGNN) for some graph data based
learning tasks where gated recurrent units are employed to update
the hidden state of a node in the graph by using the backprop-
agation through time strategy to compute gradients. Other works
[41,42] apply convolutional neural networks to the graph domain
by encoding both local graph structure and features of nodes for
the classification of graph data. Wang et al. [43] perform similar-
ity relationship and spatial-temporal relationship reasoning with
graph convolutional networks for human action recognition. Petarn
et al. [44] leverage masked self-attentional layers in the graph at-
tention network to address the shortcoming of these graph convo-
lution based methods. Our work utilizes a GNN model to explore
the implicit visual relationship among the objects/regions of inter-
est in an image.

3. Our proposed method

The overall framework of our image captioning system is illus-
trated in Fig. 1. It consists of a deep CNN to extract image features,
a GNN model to learn the implicit visual relationship among the
visual objects or regions in an image, a visual context-aware atten-
tion model to select important relationship representations, and a
LSTM-based language model to generate sentences.

Given an image I, we employ the widely-used CNN archi-
tecture ResNet101 [45] pretrained on the ImageNet classification
task to extract nonlinear activations from the last convolutional
layer as image representations, which can be denoted as V =

{v1,v,---,vp|v; € R™}. Based on the image representations cor-
responding to different spatial locations, we utilize a GNN model
fenn to explore implicit relationship between the visual objects in
the image. The GNN model takes each spatial representation to
initialize each node in the graph and recurrently updates each
node information by utilizing the hidden presentations from other
nodes to obtain the implicit relation-aware visual representations
R={ry,ry,---,m|r; € R™}. The generated implicit relation-aware
visual representations R are forwarded into a context-aware atten-
tion model fy;. Different from the existing visual attention models,
our context-aware attention model employs a LSTM to record pre-
viously attended visual information at each time step, which helps
guide the future selection on the unexplored visual information
in an inhibition-of-return way. After that, a LSTM-based language
model fi;,, takes previous hidden state h;_;, previously generated
word embedding x; and the outputs v; of the context-aware at-
tention model as input, and outputs the current hidden state h; to
predict the next word. The main working flow of our image cap-
tioning method is shown in the following equations:

V = CNN(I), (1)
R= fgn (V). (2)
Ut = fae (R he—1, Pe-1). 3)
he = fistm (he—1. Xe. V), (4)
St = argmax softmax(Woht + by), (5)

where t denotes the time step, s; denotes the predicted word ac-
cording to the maximum softmax probability, W, and b, are the
weight and bias to be learned respectively. The hidden state hg is
initialized with zero. Eqs. (3)-(5) are recursively applied, fenn, fatt
and fi,, will be discussed in the following sections.

3.1. Graph-based visual relationship modelling

The GNN models data structure and representation in a graph,
which has made remarkable success on various graph data based
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learning tasks. Inspired by GGNN [40] which learns the represen-
tation of a graph to predict node or graph-level output, we extend
it to explore the implicit relationship among the visual objects in
images. In the GNN model, we instantiate a graph G for each image
that consists of N nodes corresponding to spatial locations of the
image representation derived from a deep CNN. In order to fully
capture the relationships between these nodes, we employ a fully-
connected graph and learn edge strengths/weights between nodes.
The edge strengths/weights between nodes form an adjacency ma-
trix A, which denote the probabilities of the relationships exist-
ing between any two graph nodes. Without the learning of edge
weights, each edge weight A;; except for the diagonal element in
the adjacency matrix is one. With the learning of edge weights,
each edge weight A;; between two nodes v;, v; in the graph can be
defined as:

Ai.j:a(fedge(|vi_vj|)) (6)
where f,qg is a convolutional layer with kernel size 1, followed by
a sigmoid function. The f,q4 takes the absolute difference between
node features as input, which satisfies the symmetry property [46].

To reduce the dimension of image representations and initialize
the hidden state of each node in the graph, we apply non-linear
transformation to the image representations V and use the trans-
formed vector to initialize the hidden state of each node:

172 = @ (Wgvq + by), (7)
hy = B (1), (8)
where W, and b, are the weight and bias to be learned respec-
tively, voeV is the feature vector corresponding to each spatial
location in the image, h9 denotes the initial hidden state of each
node a in the graph, ¢ and B are the non-linear activation func-
tions (e.g., hyperbolic tangent function Tanh and rectified linear
unit Relu).

At each time step t, the incoming messages of each node a are

collected from the hidden states of its adjacent nodes {d|VYa G, (d,
a)eB}:

K= 3 Wehi ! + b, 9)
(d,a)eB

where Wy and bg are the shared weight and bias to be learned
across all nodes respectively, and B denotes the collection of adja-
cent nodes, which can be obtained from the adjacency matrix A.

After aggregating the incoming messages for each node, the
GNN employs Gated Recurrent Unit (GRU) which contains a reset
gate r and a update gate z to update the hidden state of each node
as follows:

Z=o (szfl +URT + bz), (10)
rh =0 (Wixt + Urhl ! + by, (11)
ht = ¢(Wixl, + Uy (ry © h5Y) + by,). (12)
hy=(1-2) o +2 o h, (13)

where the default operation between matrices is matrix multipli-
cation, ® denotes an element-wise multiplication, W and U denote
the shared weights to be learned, b denotes the bias term, o de-
notes the element-wise logistic sigmoid function, and ¢ denotes
hyperbolic tangent function tanh. The reset gate r and the update
gate z selectively control the influence of information from previ-
ous hidden state and current hidden state. Note that the hidden
states of all nodes in the graph are updated synchronously. We re-
currently update the hidden state of each node for T time steps
and extract node-level outputs of the GNN as the implicit relation-
aware visual representations R for the following visual context-
aware attention model.

3.2. Visual context-aware attention model

Given the previous hidden state h;_; of the LSTM-based lan-
guage model, the previously attended visual information p;_; and
the implicit relationship representations R from the GNN, the ini-
tial normalized attention weights a; for the visual signal R can be
obtained through a single layer neural network followed by a soft-
max function:

z; = Wi, tanh (UgeR + Wagehe—1 + Mage Pe—1 + bare). (14)

a; = softmax(z;), (15)

where Uy, Wy and Mg are the shared weights to be learned,
byt denotes the bias term. In this step, the implicit relation-aware
visual representations R are forwarded into the attention model.
As a result, the attention model can attend to the implicit visual
relationship at each time step. Furthermore, we design an interpo-
lation gate k; to fuse the current normalized weight a; with previ-
ously produced weight a;_;.

ke = o (Wihe_1 + by), (16)

ar = keag + (1 - kr)dt_h (17)

where W) and by are the shared weight and bias term to be
learned respectively, o denotes the element-wise logistic sigmoid
function. If the gate k; is zero, the current normalized weight is en-
tirely ignored, and the previously produced weight is used. On the
contrary, if the gate k; is one, the previously produced weight is ig-
nored, and the current normalized weight is applied to select suit-
able visual information. The attended visual signal v; is denoted as
a linear combination of all relation-aware visual representations:

U =Y a,(R). (18)
i=1

After obtaining the attended visual information, we forward it
into a LSTM model which memorizes the visual information se-
lected by our attention model. As a result, the context information
from the LSTM model can be utilized to guide the attention weight
selection at next time step:

Pt = Qistm (De—1. V). (19)

3.3. LSTM-based language model

To model sentence generation, we employ a variant of LSTM
[47] which has achieved great success in image captioning. Differ-
ent from previous image captioning models, we design an adap-
tive gate g; to control whether visual signal can be fed into the
iteration of LSTM. The proposed visual gated LSTM extends the ba-
sic LSTM which contains a memory cell m; and three input gates
(i.e., input gate i;, forget gate f; and output gate o;) with additional
visual gate unit. The inputs to the visual gated LSTM include the
word embedding x;, the previous hidden state h,_; and the at-
tended visual signal v;. The iteration of LSTM at each time step
t can be formulated as follows:

8 = 0 (Wex + Ugh:_1 + by), (20)
i = o (Wix; + Uih;_1 + g © MiT; + by), (21)
fi = 0 (Wpxe + Ushy_y + g © MsT: + by), (22)
0r = 0 (WoXe + Uohy_1 + 8 © MoT; + by), (23)
i = ¢ (Wexe + Uchi_1 + 8 © McU; + by), (24)
me =i ©m + fr @ m_q, (25)
he = 0c © ¢ (my), (26)
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where the default operation between matrices is matrix multipli-
cation, ® denotes an element-wise multiplication, W, U, and M de-
note the shared weight matrices to be learned, and b denotes the
bias term. m; is the input to the memory cell m;, which is gated
by the input gate ir. o denotes the element-wise logistic sigmoid
function, and ¢ denotes hyperbolic tangent function tanh.

3.4. Model learning

Based on the hidden state of LSTM-based language model at
each timestep, we employ a non-linear softmax layer to predict the
next word’s probability distribution over the whole vocabulary:

pr = softmax(Uphe +b), (27)

where U, and b, denote the parameters to be learned.

During training, the optimal sentence corresponding to the in-
put image can be generated by maximizing the probability of sen-
tences via chain rule. Assuming that there are N image-description
training pairs (x, y') in the training dataset, where each sentence
y' has a variable length t;. We define the overall loss function as
the averaged log-likelihood over the whole training dataset plus a
regularization term:

1N o A
LO) = 5 2_ 210 p(¥1yis-. X 0) + 41015, (28)

i=1 j=1

where yi is a one-hot encoding vector corresponding to the in-
put word, 6 is model parameters to be learned, and A denotes
the regularization coefficient. We can use stochastic gradient de-
scent to optimize the above loss function. During testing, we can
recursively sample y; based on the probability distribution p until
meeting the end symbol of the vocabulary.

4. Experimental results and discussions
4.1. Datasets

We compare our proposed model with the state-of-the-art
methods on two public benchmark datasets, Microsoft COCO
[48] and Flickr30k [49].

Microsoft COCO consists of 82,783, 40,504 and 40,775 images
for training, validation and testing respectively. It is currently the
largest image captioning dataset. Each image is labelled with at
least five captions in the dataset. Compared with Ficker30k, this
dataset is more challenging since the images contain multiple ob-
jects in their natural context. As there are no available ground
truth captions for the test set, we follow the widely used data split
[24] for this dataset: 5000 images for validation, 5000 images for
testing and other images for training.

Flickr30k consists of 158,915 crowd-sourced captions and
31,783 images collected from Flickr. This dataset extends the pre-
vious Flickr8k dataset and mainly describes everyday activities and
events on humans. Each image has five reference captions in the
dataset. To make fair comparison with existing studies, we employ
the publicly available split [24]: 29,783 images are used for train-
ing, 1000 images for validation, and 1000 images for testing.

4.2. Experimental settings

Data preprocessing. In the experiments, we apply the standard
preprocessing practice to the images and captions.

For captions, we convert each sentence to lower case and dis-
card all the non-alphabetic characters. We drop those words that
occur less than five times in MS COCO or three times in Flick30k,
resulting in a vocabulary with size 10,478 and 7652 in MS COCO
and Flickr30k respectively. If a word is not in the vocabulary, we

set it as an unknown token <UNK>. For modelling convenience,
we add a start token <Start> and an end token <End> to the
vocabulary. During testing, we set the maximum allowed sentence
length as 30.

For images, we encode them using the spatial feature outputs
of the last convolutional layer of ResNet-101 [45]. After forward-
ing the images to the ResNet-101, we employ spatially adaptive
average pooling used in [33] to make the output size of all im-
ages same. Therefore, the final output size of the last convolutional
layer of ResNet-101 is 10 x 10 x 2048, resulting in the 100 spatial
location indexes over the input image.

Training and testing details. In the experiments, we set the
hidden size of LSTM, the image feature size and word embedding
size all to 512. To decrease the number of model parameters, we
set the hidden size of each attention layer to 256. We employ
Adam optimizer with the initial learning rate 5e-4. We set batch
size as 64 and maximum epoch number as 80. To avoid overfitting,
we employ dropout with rate 0.5 and early stopping if the valida-
tion CIDEr [50] score does not increase over the last 10 epochs.
During training, we first fix the deep CNN part for training up
to 30 epoches and then finetune the deep CNN part by anneal-
ing the learning rate by a factor of 0.8 every three epochs. During
testing, we forward the start token or previously generated token
to the trained model to sample next word until the end token is
reached. Similar to existing image captioning models, we use beam
search strategy with size 5. Even though we find that beam search
with length normalization can improve performance, we do not
use length normalization in all experiments to keep comparisons
fair.

4.3. Evaluation metrics

To quantitatively evaluate the performance of our proposed
method, four commonly used metrics, namely BLEU [51], Meteor
[52], Rouge-L [53] and CIDEr [50]), are used to evaluate the qual-
ity of generated sentences. All these metrics measure the consis-
tency of n-grams between generated sentences and reference sen-
tences. To make fair comparisons with the existing image caption-
ing methods, we utilize the publicly available implementation eval-
uation code released by MS COCO Evaluation Server [48] to test the
performance.

4.4. Compared methods

To demonstrate the effectiveness of our proposed method, we
compared the following state-of-the-art methods:

(1) NIC [8]: NIC injects image features derived from the fully-
connected layer of a deep CNN into the first time step of
the LSTM-based language model. We directly cite the results
reported in [54].

(2) LRCN [23]: LRCN considers two stacked LSTM as a language

model which takes previously generated word and global

image feature derived from the fully-connected layer of a

deep CNN as input at each timestep.

DeepVS [24]: DeepVs first learns a structured objective that

aligns two modalities (image regions and sentences) through

a multimodal embedding, then utilizes a multimodal recur-

rent neural network to generate sentences corresponding to

image regions based on the learned modal alignments.

Soft-Att [11] and Hard-Att [11]: Soft-Att and Hard-Att select

some regional representations derived from the last convolu-

tional layer of a deep CNN and use the LSTM-based language
model to decode each word at each timestep conditioned on
the selected representations.

(5) ATT-FCN [31]: ATT-FCN first detects key attributes in an im-
age, then takes the global image feature and the detected

—
w
~—

=
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attributes as input and fuses them into the hidden state of
the LSTM-based language model at each timestep.

(6) G-LSTM [26]: G-LSTM incorporates extra semantic informa-
tion obtained from retrieval-based guidance, semantic em-
bedding guidance and image-based guidance into the LSTM-
based language model to generate captions.

(7) ERD [12]: ERD conducts a fixed number of review steps in-
cluding attentive input reviewer and attentive output re-
viewer on the encoder to generate multiple thought vectors.

(8) Sentence-Condition (SC) [30]: SC leverages previously gener-
ated text to guide the model to focus on certain image fea-
tures and injects the attended features into the LSTM-based
language model at each timestep.

(9) MSM [54]: MSM integrates the inter-attribute correlations
into multiple instance learning method and explores differ-
ent ways of injecting the detected attributes and image rep-
resentations into the LSTM-based language model.

(10) Adap [13]: Adap is a novel adaptive attention model which
determines whether to attend to the image feature or not as
the prediction of some words does not need visual signal.

(11) Att2in* [33]: Att2in* employs an improved attention model
for sentence generation and leverages a self-critical sequence
training algorithm to optimize non-differentiable NLP met-
rics to boost the model performances. To keep a fair com-
parison, we only cite the results under the same optimiza-
tion objective.

(12) SCA [55]: SCA extends previous Soft-Att [11] with channel-

wise attention in multi-layer feature maps, which can dy-

namically modulate visual context across spatial, channel-
wise and multi-layer dimensions.

UD-Base* [56]: UD-Base* first detects key image regions via

a Faster R-CNN model, then use a top-down attention model

to select the regions. To keep a fair comparison, we only cite

the results of the proposed model under the same image
features and training objective.

Convcap [35]: Convcap employs a CNN-based decoder as a

language model to generate sentences. The CNN-based de-

coder is mainly implemented by multi-layer masked convo-
lutions.

(15) AED-AR [57]: AED-AR attempts to regularize the transition
dynamics of the LSTM-based language model with an auto-
reconstructor network.

(16) WICG [58]: WICG explores different ways of incorporating

image features into the language model and demonstrates

that merging image features in a subsequent stage is effec-
tive.

HCVSA [59]: HCVSA utilizes a bidirectional Grid LSTM to

learn complex spatial patterns in the image context and em-

ploys a two-layer bidirectional LSTM to generate the global
sentence.

(18) Our_A_R_L is proposed in this paper, and other variant mod-
els are also explored. Our Baseline employs the attention
model as [11] and the LSTM-based language model de-
scribed in Section 3.3, Our_A incorporates context-aware at-
tention model to the baseline, Our_R incorporates graph-
based visual relationship without the learning of edge
weights to the baseline, Our_R_L incorporates graph-based
visual relationship with the learning of edge weights to the
baseline, and Our_A_R employs both attention context-aware
attention model and graph-based relationship information.

(13

—

(14

~

—
—
~

~

4.5. Quantitative analysis

Table 1 shows the performance of compared methods and
ours on the test split of MS COCO. Overall, the results across
seven evaluation metrics consistently indicate that our proposed

Our_A_R and Our_A_R_L achieve better performances than other
eighteen state-of-the-art methods. In particular, Our_A_R_L can
achieve 35.8 and 111.3 in the BLEU@4 and CIDEr respectively, mak-
ing the relative improvement over the recently state-of-the-art
attention-based methods (Att2in [33] and Adap [13]) by 14.4% |/
9.9% and 7.8% | 2.6% respectively. Note that our Baseline which
employs the same attention mechanism as [11] and the LSTM-
based language model described in Section 3.3 also achieves bet-
ter or comparable performance than some state-of-the-art meth-
ods (e.g., SC [30] and MSM [54]) due to the powerful ability of
variant LSTM. By additionally incorporating context-aware atten-
tion mechanism and graph-based visual relationship to Baseline
respectively, both Our_A and Our_R can achieve further perfor-
mance improvement in terms of all evaluation metrics compared
with the implemented Baseline. The improvement of Our_A and
Our_R over Baseline by 3.1% and 4.2% respectively in the CIDEr
metric indicates that our proposed attention model and graph-
based relationship model are helpful for image captioning. When
utilizing both attention context-aware visual attention mechanism
and graph-based relationship information, our proposed Our_A_R
can significantly improve captioning performance from 32.3/101.6
to 35.2/109.4 in terms of BLEU@4 and CIDEr, respectively. Af-
ter using learning-based edges for visual relationship modelling,
our model can further achieve better results in most evaluation
metrics. These results indicate that exploiting context-aware vi-
sual attention mechanism and building graph-based relationship
model are complementary for improving image captioning perfor-
mance.

The performance comparison in terms of seven evaluation met-
rics on the test split of the Flickr30k dataset is summarized in
Table 2. The evaluation scores on Flickr30k are much lower than
those on MS COCO, due to the small number of training sam-
ples including visual and textual clues in the dataset. Similarly, our
proposed Our_A_R and Our_A_R_L consistently outperform other
state-of-the-art methods in terms of all evaluation metrics. In par-
ticular, our proposed Our_A_R_L achieves 27.7 and 574 in the
BLEU@4 and CIDEr, respectively, making the relative improvement
over the best competitor Adap [13] by 10.4% and 8.1% respectively.
Similar to the observations on MS COCO, our proposed Our_A
and Our_R perform much better than Baseline by further taking
context-aware visual attention mechanism and graph-based rela-
tionship model into account for image captioning respectively. In
addition, further improvement is achieved with Our_A_R where
both context-aware visual attention model and graph-based rela-
tionship model are utilized. When using learning-based edges for
our models (Our_R_L and Our_A_R_L), the performances can be
further boosted in terms of most evaluation metrics.

4.6. Qualitative analysis

To better visualize and understand the visual relationships, we
plot the relationship probability matrices (also called relationship
adjacency matrix) of two test images in the Fig. 2(a). The learned
edge strengths/weights denote the probabilities of the relation-
ships existing between any two graph nodes, and the sparse proba-
bility matrix means the sparse relationships between the objects in
the images. To better illustrate the learned relationships, we then
plot the attention weight distribution over 100 graph nodes when
generating three subject-relation-object words in Fig. 2(b), e.g.,
zebra-standing-snow and man-riding-wave, and show the strong
relationships corresponding to the mostly attended three graph
nodes in Fig. 2(c). Overall, it can be seen that our model can cap-
ture rich visual relationships consistent with human perception
on the test images. From the three subject-relation-object words
in Fig. 2(b,c), e.g., zebra-standing-snow and man-riding-wave, we
can see that the nodes and their relationships corresponding to
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Table 1

The performance comparison with eighteen state-of-the-art methods on the MS COCO dataset.
The results of ablated models (Baseline, Our_A, Our_R, Our_R_L and Our_A_R) and our full model

(Our_A_R_L) are shown at the bottom of the table.

Method BLEU@1 BLEU@2 BLEU@3 BLEU@4 METEOR ROUGE-L CIDEr
NIC [8] 66.6 451 30.4 20.3 - - -
LRCN [23] 69.7 51.9 38.0 27.8 22.9 50.8 83.7
DeepVsS [24] 62.5 45.0 32.1 23.0 19.5 - 66.0
Soft-Att [11] 71.8 50.4 35.7 25.0 23.0 - -
Hard-Att [11] 70.7 49.2 344 24.3 23.9 - -
ATT-FCN [31] 70.9 53.7 40.2 30.4 243 - -
ERD [12] - - - 29.8 24.0 - 89.5
SC [30] 72.0 54.6 40.4 29.8 24.5 - 95.9
MSM [54] 73.4 56.7 43.0 32.6 25.4 54.0 100.2
G-LSTM [26] 67.0 49.1 35.8 26.4 22.7 - -
Adap [13] 74.2 58.0 439 33.2 26.6 - 108.5
Att2in* [33] - - - 31.3 26.0 54.3 101.3
SCA [55] 71.9 54.8 41.1 31.1 25.0 53.1 95.2
UD-Base* [56]  74.5 - - 334 26.1 544 105.4
Convcap [35] 711 53.8 394 28.7 244 52.2 91.2
AED-AR [57] 74.0 57.6 44.0 335 26.1 54.6 103.4
WICG [58] 67.9 50.2 36.7 27.1 22.6 49.9 81.8
HCVSA [59] 76.2 60.1 45.1 35.0 27.0 - -
Baseline 72.8 56.1 42.5 323 25.1 53.2 101.6
Our_A 74.0 57.8 44.5 343 26.6 55.1 104.7
Our_R 73.9 58.7 44.4 34.0 26.7 54.7 105.8
Our_R_L 74.5 59.2 45.1 34.6 26.9 55.2 106.9
Our_A_R 75.1 60.0 46.0 35.2 275 56.5 109.4
Our_A_R_L 75.9 60.3 46.5 35.8 27.8 56.4 1113
Table 2

The performance comparison with seven state-of-the-art methods on the Flickr30k dataset. Similarly,
the results of ablated models (Baseline, Our_A, Our_R, Our_R_L and Our_A_R) and our full model

(Our_A_R_L) are shown at the bottom of the table.

Method BLEU@1 BLEU@2 BLEU@3 BLEU@4 METEOR ROUGE-L  CIDEr
DeepVS [24]  57.3 36.9 24.0 15.7 153 - 24.7
Soft-Att [11]  66.7 434 28.8 19.1 185 - -
Hard-Att [11]  66.9 439 29.6 19.9 185 - -
ATT-FCN [31] 647 46.0 324 23.0 18.9 - -
G-LSTM [26]  64.6 446 30,5 20.6 17.9 - -
SCA [55] 66.2 46.8 325 223 195 - -
Adap [13] 67.7 494 35.4 25.1 20.4 - 53.1
Baseline 66.8 48.7 34.9 245 193 452 513
Our_A 67.3 493 35.6 258 20.2 46.5 53.7
Our_R 68.0 50.7 36.2 26.5 20.7 47.0 553
Our_R_L 68.7 51.1 36.7 26.6 21.1 47.0 559
Our A R 69.2 513 375 273 213 482 56.3
Our_A_R_L 69.8 51.7 37.8 27.7 21.5 485 57.4

the subject word and object word mainly focus on the salient vi-
sual objects and backgrounds, respectively, while the nodes and
their relationships corresponding to the relation word focus on
both visual objects and backgrounds. That is to say, the relation-
ships for the relation word indeed build the bridge between sub-
ject and object. For example, the relationships of green nodes se-
lected to generate word standing focus on both the zebra and
snow regions, and connect the subject word zebra and object word
snow. To show the visualization differences between our model
(with relationship learning, denoted as rel) and previous attention
model (without relationship learning, denoted as att) in attention
weight distribution, we also plot their distribution curves (with
generated sentences) in Fig. 3. From the generated sentences, we
can see that our model can produce more accurate semantic ob-
jects than the attention model (e.g., zebra-standing-snow vs zebra-
standing). From the attention weight distribution, we can see that
both our model and the attention model attend to some similar
salient regions (e.g., the head region of zebra) when generating
subject words (zebra and person). However, our model also attends
to more different salient regions (e.g., the head region of zebra and

the snow region) than the attention model when generated rela-
tion words (standing and riding). These results further indicate our
model can boost previous attention model by attending to different
context objects especially in generating relation words.

4.7. Performance on MSCOCO online testing server

To make a full comparison with other state-of-the-art methods,
we have submitted Our_A_R (with visual representations) to the
official MSCOCO evaluation server and obtain the model perfor-
mance on the official testing set. Table 3 reports the performance
leaderboard of published state-of-the-art methods and ours on the
online MSCOCO test server. A test image on the leaderboard test-
ing sets consists of five human-annotated captions (c5) or forty
human-annotated captions (c40). In the experiment, Our_A_R does
not use more complicated deep CNN models (i.e., ResNet-152 [45])
than the compared methods (e.g., MSM [54]). In addition, Our_A_R
also does not use any reinforcement learning based objective func-
tion [33] which can apparently improve the performance of all
evaluation metrics, and does not utilize model ensemble technique
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Position
Generated by rel: A man riding a wave on top of a surfboard.

Position

Generated by att: A person riding a surf board on a wave.
Fig. 3. Visualization differences between our model (with relationship learning, denoted as rel) and attention model (without relationship learning, denoted as att) in

attention weight distribution when generating key words.



Table 3

The performance comparison with previous state-of-the-art image captioning methods on the online MSCOCO testing server. Here
we directly cite most results from Lu et al. [13] to make a fair comparison.
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B-2 B-3 B-4 METEOR ROUGE-L CIDEr
Method

c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40
NIC [8] 0.542 0.802 0.407 0.694 0309 0.587 0.254  0.346 0.530  0.682 0.943 0.946
MSCap [60] 0.543 0.819 0.407 0.710  0.308 0.601 0.248 0.339 0.526  0.680 0.931 0.937
mRNN [25] 0.545 0.798 0.404 0.687 0299  0.575 0.242 0.325 0.521 0.666 0.917 0.935
LRCN [23] 0.548 0.804  0.409 0.695 0.306  0.585 0.247 0.335 0.528 0.678 0.921 0.934
HardA [11] 0.528 0.779 0.383 0.658 0.277  0.537 0.241 0.322 0.516  0.654  0.865 0.893
ATTF [31] 0.565 0.815 0.424 0.709 0316  0.599 0.250  0.335 0.535 0.682 0.943 0.958
ERD [12] 0.550 0.812 0.414  0.705 0.313 0.597 0.256  0.347 0.533 0.686 0.965 0.969
MSM [54] 0.575 0.842 0436 0.740 0330 0.632 0.256  0.350 0.542 0.700 0.984 1.003
Adap [13] 0.584  0.845 0.444 0.744 0336 0.637 0.264  0.359 0.550  0.705 1.042 1.059
Ours 0.589 0856 0450 0.756 0343 0.647 0270 0364 0555 0.710 1.061 1.064

Table 4 Table 5

The performance comparisons of our pro-
posed Our_R with other variant meth-
ods on the MS COCO dataset in terms of
BLEU@4 and CIDEr metrics.

Method BLEU@4  CIDEr

Our_V(w/o R) 32.3% 101.6%
Our_R(w/o V) 34.0% 105.8%
Our_R(w/ V) 34.1% 105.7%
Our_R(GNN) 34.0% 105.8%
Our_R(GNN-4)  32.8% 103.0%
Our_R(GNN-8)  33.3% 104.6%
Our_R(FFCL) 32.6% 102.7%

(e.g., Adap [13]) to boost the performance. Compared with the 9
methods on the leaderboard, Our_A_R still outperforms them in
terms of all evaluation metrics on both ¢5 and c40 testing sets.

4.8. Model analysis

Relationship representations. To investigate whether relation-
ship representations can replace visual representations or not, we
present the experimental results in the first three rows of Table 4.
From these results, we can see that Our_R(w/o V) which em-
ploys only relationship representations achieves comparable results
with Our_R(w/ V) which employs both relationship representa-
tions and visual representations in the evaluation metrics. Com-
pared with Our_V(w/o R) which employs only visual representa-
tions, Our_R(w/o V) clearly outperform it by a large margin in the
evaluation metrics. The comparison results indicate the learned re-
lationship representations R can replace visual representations V
for image captioning.

Other graph structures. To figure out how the other graph
structures affect model performance, we present the experimen-
tal results of different graph structures in the last four rows of
Table 4. Our_R(GNN) is implemented using graph neural network
with fully-connected edges, Our_R(GNN-4) and Our_R(GNN-8) are
implemented using graph neural network with 4-neighborhood
and 8-neighborhood connections respectively, and Our_R(FFCL) is
implemented using flatten and fully connected layers which is
generally considered very close to Our_R(GNN). It can be seen
that Our_R(GNN) achieves much better results than Our_R(GNN-4,
Our_R(GNN-8) and Our_R(FFCL) in the evaluation metrics, which
further proves the effectiveness of our graph model.

4.9. Analysis of parameters

To investigate the effect of two important parameters (itera-
tion step T for the GNN and size of feature map for the attention
model) for image captioning on the MS COCO dataset, we design
several comparison experiments. Table 5 shows the results of our

The performance comparisons of our proposed Our_R under dif-
ferent parameter settings on the MS COCO dataset in terms of
BLEU@4 and CIDEr metrics. Note that the number * in “T-*" and
“F-*" denotes the number of the iteration step T for the GNN
or the size of feature map for the attention model respectively.
The first four rows show the results of the iteration step T with
different parameter values (3, 4, 5 and 6), and the last three
rows show the results of the size of feature map with different
parameter values (6, 8 and 10).

Method BLEU@4 CIDEr

Our_R(T-3) 33.5% 104.7%
Our_R(T-4) 34.1% 105.9%
Our_R(T-5) 34.2% 105.7%
Our_R(T-6) 34.2% 105.9%
Our_R(F-6) 32.7% 103.3%
Our_R(F-8) 33.4% 104.6%
Our_R(F-10) 34.1% 105.9%

proposed Our_R model under different parameter settings. The first
four rows of Table 5 lists the results of the iteration step T in the
range of 3, 4, 5 and 6, and the last three rows of Table 5 shows the
results of the size of feature map in the range of 6, 8 and 10. From
these results, we can observe that increasing the iteration step T
and the size of feature map can lead to performance improve-
ments. In particular, the performance of our proposed Our_R does
not increase too much when iteration step T is increased to a level.
However, the number of parameters increases exponentially when
the iteration step T and the size of feature map are increased. To
make a tradeoff between performance and model complexity, we
empirically set the iteration step T and the size of feature map to
4 and 10 in our experiments, respectively.

5. Conclusions

In this paper, we have presented an image captioning method
which consists of two novel components: graph based visual re-
lationship modelling and context-aware attention mechanism. The
visual relationship modelling is implemented via a graph neu-
ral network which recurrently passes the messages from adjacent
nodes across time. The context-aware attention mechanism is im-
plemented by a LSTM to memorize its previously attended visual
information. Compared with the state-of-the-art methods, our pro-
posed method can attend to both specific visual objects in an im-
age and the implicit visual relationship among the visual objects of
an image and take into account what has been previously attended
to. We have evaluated the effectiveness of our proposed method
on two public benchmark datasets: MS COCO and Flickr30K. In the
experiments, our proposed method consistently outperforms the
state-of-the-art methods in terms of all evaluation metrics on both
datasets. We further visualize the spatial attention maps and gen-
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erated sentences to better understand our method, which indicates
that our proposed method learns information consistent with hu-
man perception. In the future, we will aim to integrate explicit
visual relationship into our method. Furthermore, our proposed
method can also be applied to other vision-to-language tasks such
as visual question answering and visual dialogue.
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